亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Beluga whale optimization: A novel nature-inspired metaheuristic algorithm

元启发式 水准点(测量) 计算机科学 白鲸 算法 鲸鱼 可扩展性 Bat算法 人工智能 粒子群优化 地理 地图学 北极的 渔业 生物 生态学 数据库
作者
Changting Zhong,Gang Li,Zeng Meng
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:251: 109215-109215 被引量:608
标识
DOI:10.1016/j.knosys.2022.109215
摘要

In this paper, a novel swarm-based metaheuristic algorithm inspired from the behaviors of beluga whales, called beluga whale optimization (BWO), is presented to solve optimization problem. Three phases of exploration, exploitation and whale fall are established in BWO, corresponding to the behaviors of pair swim, prey, and whale fall, respectively. The balance factor and probability of whale fall in BWO are self-adaptive which play significant roles to control the ability of exploration and exploitation. Besides, the Levy flight is introduced to enhance the global convergence in the exploitation phase. The effectiveness of the proposed BWO is tested using 30 benchmark functions, with qualitative, quantitative and scalability analysis, and the statistical results are compared with 15 other metaheuristic algorithms. According to the results and discussion, BWO is a competitive algorithm in solving unimodal and multimodal optimization problems, and the overall rank of BWO is the first in the scalability analysis of benchmark functions among compared metaheuristic algorithms through the Friedman ranking test. Finally, four engineering problems demonstrate the merits and potential of BWO in solving complex real-world optimization problems. The source code of BWO is currently available to public: https://ww2.mathworks.cn/matlabcentral/fileexchange/112830-beluga-whale-optimization-bwo/ . • A novel metaheuristic algorithm named as Beluga Whale Optimization (BWO) is proposed. • The behaviors of swim, prey and whale fall are designed on BWO algorithm. • The BWO is tested on 30 well-known benchmark functions and 4 engineering problems. • The BWO is compared with 15 well-known metaheuristic algorithms. • The BWO outperforms comparing algorithms in benchmark functions, especially for scalability of dimension.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
zgjc发布了新的文献求助10
20秒前
池雨完成签到 ,获得积分10
22秒前
38秒前
xiaoleihu完成签到 ,获得积分10
39秒前
Stefanie4120发布了新的文献求助10
42秒前
Hello应助Stefanie4120采纳,获得10
50秒前
情怀应助zgjc采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
奔跑的小熊完成签到 ,获得积分10
1分钟前
皮卡丘完成签到,获得积分10
1分钟前
DrN关闭了DrN文献求助
1分钟前
可爱的靖柏关注了科研通微信公众号
2分钟前
共享精神应助籍新如采纳,获得10
2分钟前
wangfaqing942完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
籍新如发布了新的文献求助10
2分钟前
2分钟前
2分钟前
满意人英完成签到,获得积分10
2分钟前
坐忘道发布了新的文献求助10
2分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
坐忘道完成签到,获得积分10
3分钟前
windom完成签到,获得积分10
3分钟前
3分钟前
3分钟前
羡鱼完成签到,获得积分10
3分钟前
微笑的冬天完成签到,获得积分10
3分钟前
3分钟前
小崔加油发布了新的文献求助10
3分钟前
科研通AI5应助小崔加油采纳,获得10
3分钟前
紫色奶萨完成签到,获得积分10
4分钟前
4分钟前
科研通AI6应助Batby采纳,获得10
4分钟前
4分钟前
大道希言完成签到,获得积分10
4分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
A Systemic-Functional Study of Language Choice in Singapore 400
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4869817
求助须知:如何正确求助?哪些是违规求助? 4160665
关于积分的说明 12902001
捐赠科研通 3915519
什么是DOI,文献DOI怎么找? 2150478
邀请新用户注册赠送积分活动 1168832
关于科研通互助平台的介绍 1071763