Beluga whale optimization: A novel nature-inspired metaheuristic algorithm

元启发式 水准点(测量) 计算机科学 白鲸 算法 鲸鱼 可扩展性 Bat算法 人工智能 粒子群优化 地理 地图学 北极的 渔业 生物 生态学 数据库
作者
Changting Zhong,Gang Li,Zeng Meng
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:251: 109215-109215 被引量:502
标识
DOI:10.1016/j.knosys.2022.109215
摘要

In this paper, a novel swarm-based metaheuristic algorithm inspired from the behaviors of beluga whales, called beluga whale optimization (BWO), is presented to solve optimization problem. Three phases of exploration, exploitation and whale fall are established in BWO, corresponding to the behaviors of pair swim, prey, and whale fall, respectively. The balance factor and probability of whale fall in BWO are self-adaptive which play significant roles to control the ability of exploration and exploitation. Besides, the Levy flight is introduced to enhance the global convergence in the exploitation phase. The effectiveness of the proposed BWO is tested using 30 benchmark functions, with qualitative, quantitative and scalability analysis, and the statistical results are compared with 15 other metaheuristic algorithms. According to the results and discussion, BWO is a competitive algorithm in solving unimodal and multimodal optimization problems, and the overall rank of BWO is the first in the scalability analysis of benchmark functions among compared metaheuristic algorithms through the Friedman ranking test. Finally, four engineering problems demonstrate the merits and potential of BWO in solving complex real-world optimization problems. The source code of BWO is currently available to public: https://ww2.mathworks.cn/matlabcentral/fileexchange/112830-beluga-whale-optimization-bwo/ . • A novel metaheuristic algorithm named as Beluga Whale Optimization (BWO) is proposed. • The behaviors of swim, prey and whale fall are designed on BWO algorithm. • The BWO is tested on 30 well-known benchmark functions and 4 engineering problems. • The BWO is compared with 15 well-known metaheuristic algorithms. • The BWO outperforms comparing algorithms in benchmark functions, especially for scalability of dimension.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助科研通管家采纳,获得10
刚刚
yar应助科研通管家采纳,获得20
刚刚
大个应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
个性紫完成签到 ,获得积分10
1秒前
1秒前
1秒前
Sirius完成签到,获得积分10
2秒前
zz完成签到,获得积分10
2秒前
星辰大海应助爱笑大地采纳,获得10
3秒前
孙非完成签到,获得积分10
3秒前
huyux发布了新的文献求助10
4秒前
6秒前
7秒前
田様应助huyux采纳,获得10
9秒前
大蟋蟀发布了新的文献求助10
11秒前
ljw完成签到,获得积分20
11秒前
斯文败类应助夕荀采纳,获得10
12秒前
排骨大王发布了新的文献求助10
12秒前
酷炫的雅香关注了科研通微信公众号
13秒前
史小菜应助yishan101采纳,获得20
16秒前
momo完成签到,获得积分10
16秒前
17秒前
suchui完成签到 ,获得积分10
18秒前
19秒前
20秒前
2:38am完成签到 ,获得积分10
21秒前
21秒前
Vernon完成签到,获得积分10
23秒前
atonnng发布了新的文献求助10
23秒前
阿桂发布了新的文献求助10
24秒前
大蟋蟀完成签到,获得积分10
26秒前
998172完成签到,获得积分10
27秒前
28秒前
第五明月完成签到,获得积分10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959733
求助须知:如何正确求助?哪些是违规求助? 3506004
关于积分的说明 11127299
捐赠科研通 3237957
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803000