已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Beluga whale optimization: A novel nature-inspired metaheuristic algorithm

元启发式 水准点(测量) 计算机科学 白鲸 算法 鲸鱼 可扩展性 Bat算法 人工智能 粒子群优化 地理 地图学 北极的 渔业 生物 生态学 数据库
作者
Changting Zhong,Gang Li,Zeng Meng
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:251: 109215-109215 被引量:577
标识
DOI:10.1016/j.knosys.2022.109215
摘要

In this paper, a novel swarm-based metaheuristic algorithm inspired from the behaviors of beluga whales, called beluga whale optimization (BWO), is presented to solve optimization problem. Three phases of exploration, exploitation and whale fall are established in BWO, corresponding to the behaviors of pair swim, prey, and whale fall, respectively. The balance factor and probability of whale fall in BWO are self-adaptive which play significant roles to control the ability of exploration and exploitation. Besides, the Levy flight is introduced to enhance the global convergence in the exploitation phase. The effectiveness of the proposed BWO is tested using 30 benchmark functions, with qualitative, quantitative and scalability analysis, and the statistical results are compared with 15 other metaheuristic algorithms. According to the results and discussion, BWO is a competitive algorithm in solving unimodal and multimodal optimization problems, and the overall rank of BWO is the first in the scalability analysis of benchmark functions among compared metaheuristic algorithms through the Friedman ranking test. Finally, four engineering problems demonstrate the merits and potential of BWO in solving complex real-world optimization problems. The source code of BWO is currently available to public: https://ww2.mathworks.cn/matlabcentral/fileexchange/112830-beluga-whale-optimization-bwo/ . • A novel metaheuristic algorithm named as Beluga Whale Optimization (BWO) is proposed. • The behaviors of swim, prey and whale fall are designed on BWO algorithm. • The BWO is tested on 30 well-known benchmark functions and 4 engineering problems. • The BWO is compared with 15 well-known metaheuristic algorithms. • The BWO outperforms comparing algorithms in benchmark functions, especially for scalability of dimension.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
星辰大海应助lrh采纳,获得10
4秒前
Feng5945发布了新的文献求助10
4秒前
sirf完成签到 ,获得积分10
5秒前
6秒前
7秒前
英俊的铭应助22222采纳,获得10
7秒前
lin.xy完成签到,获得积分10
8秒前
Zz发布了新的文献求助10
12秒前
宁燕发布了新的文献求助10
12秒前
drrobins发布了新的文献求助10
14秒前
14秒前
火星上的山河完成签到 ,获得积分10
14秒前
周诗琪完成签到 ,获得积分10
15秒前
六五完成签到 ,获得积分10
15秒前
18秒前
19秒前
遇上就这样吧应助drrobins采纳,获得10
21秒前
22222发布了新的文献求助10
22秒前
23秒前
Zz完成签到,获得积分10
27秒前
Tayzon完成签到,获得积分10
28秒前
苟子发布了新的文献求助10
29秒前
结实小蜜蜂完成签到,获得积分20
30秒前
00完成签到 ,获得积分10
34秒前
瑞瑞刘完成签到 ,获得积分10
36秒前
小森关注了科研通微信公众号
41秒前
Ava应助结实小蜜蜂采纳,获得10
41秒前
南与晚霞发布了新的文献求助10
41秒前
Hu完成签到,获得积分10
47秒前
mengchen完成签到,获得积分10
48秒前
鸣蜩十三完成签到,获得积分10
48秒前
wang5945完成签到 ,获得积分10
50秒前
NexusExplorer应助苟子采纳,获得10
51秒前
情怀应助mengchen采纳,获得30
53秒前
柚子完成签到 ,获得积分10
57秒前
谨慎秋珊完成签到 ,获得积分10
58秒前
稳重岩完成签到 ,获得积分10
1分钟前
岸上牛完成签到,获得积分10
1分钟前
懦弱的南蕾完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4539559
求助须知:如何正确求助?哪些是违规求助? 3973721
关于积分的说明 12309443
捐赠科研通 3640672
什么是DOI,文献DOI怎么找? 2004626
邀请新用户注册赠送积分活动 1040073
科研通“疑难数据库(出版商)”最低求助积分说明 929197