Beluga whale optimization: A novel nature-inspired metaheuristic algorithm

元启发式 水准点(测量) 计算机科学 白鲸 算法 鲸鱼 可扩展性 Bat算法 人工智能 粒子群优化 地理 地图学 北极的 渔业 生物 生态学 数据库
作者
Changting Zhong,Gang Li,Zeng Meng
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:251: 109215-109215 被引量:502
标识
DOI:10.1016/j.knosys.2022.109215
摘要

In this paper, a novel swarm-based metaheuristic algorithm inspired from the behaviors of beluga whales, called beluga whale optimization (BWO), is presented to solve optimization problem. Three phases of exploration, exploitation and whale fall are established in BWO, corresponding to the behaviors of pair swim, prey, and whale fall, respectively. The balance factor and probability of whale fall in BWO are self-adaptive which play significant roles to control the ability of exploration and exploitation. Besides, the Levy flight is introduced to enhance the global convergence in the exploitation phase. The effectiveness of the proposed BWO is tested using 30 benchmark functions, with qualitative, quantitative and scalability analysis, and the statistical results are compared with 15 other metaheuristic algorithms. According to the results and discussion, BWO is a competitive algorithm in solving unimodal and multimodal optimization problems, and the overall rank of BWO is the first in the scalability analysis of benchmark functions among compared metaheuristic algorithms through the Friedman ranking test. Finally, four engineering problems demonstrate the merits and potential of BWO in solving complex real-world optimization problems. The source code of BWO is currently available to public: https://ww2.mathworks.cn/matlabcentral/fileexchange/112830-beluga-whale-optimization-bwo/ . • A novel metaheuristic algorithm named as Beluga Whale Optimization (BWO) is proposed. • The behaviors of swim, prey and whale fall are designed on BWO algorithm. • The BWO is tested on 30 well-known benchmark functions and 4 engineering problems. • The BWO is compared with 15 well-known metaheuristic algorithms. • The BWO outperforms comparing algorithms in benchmark functions, especially for scalability of dimension.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芒go发布了新的文献求助10
刚刚
Akim应助大力的无声采纳,获得10
1秒前
2秒前
3秒前
cdercder应助侯谋采纳,获得10
3秒前
4秒前
闫译文应助王欣采纳,获得10
4秒前
4秒前
埃里克牛发布了新的文献求助10
5秒前
今后应助rvoice采纳,获得10
5秒前
5秒前
小马甲应助Chen272采纳,获得10
5秒前
6秒前
Lucas应助超级的囧采纳,获得10
6秒前
orixero应助屈聪展采纳,获得10
6秒前
天天困发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
lewu完成签到,获得积分10
9秒前
9秒前
9秒前
拼搏的败完成签到 ,获得积分10
9秒前
NMR发布了新的文献求助10
10秒前
科研通AI5应助张凤采纳,获得10
10秒前
清水发布了新的文献求助10
10秒前
嘿嘿发布了新的文献求助10
12秒前
li完成签到,获得积分10
12秒前
13秒前
13秒前
lee应助lewu采纳,获得10
14秒前
14秒前
Chen272发布了新的文献求助10
14秒前
14秒前
Grace159完成签到 ,获得积分10
16秒前
共享精神应助宋晓静采纳,获得10
17秒前
17秒前
积极的邴完成签到 ,获得积分10
18秒前
安紊完成签到,获得积分10
18秒前
bkagyin应助陈然辰采纳,获得10
19秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
中国化工新材料产业发展报告(2024年) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3762079
求助须知:如何正确求助?哪些是违规求助? 3305890
关于积分的说明 10135817
捐赠科研通 3020044
什么是DOI,文献DOI怎么找? 1658645
邀请新用户注册赠送积分活动 792039
科研通“疑难数据库(出版商)”最低求助积分说明 754840