Real‐time stereo reconstruction of intraoperative scene and registration to preoperative 3D models for augmenting surgeons' view during RAMIS

可视化 计算机科学 计算机视觉 人工智能 可用性 预处理器 点云 管道(软件) 肾切除术 机器人 医学影像学 图像处理 过程(计算) 集合(抽象数据类型) 三维重建 医学物理学 医学 图像(数学) 人机交互 内分泌学 操作系统 程序设计语言
作者
Giorgos Zampokas,Georgia Peleka,Kostantinos Tsiolis,Angeliki Topalidou-Kyniazopoulou,Ioannis Mariolis,Dimitrios Tzovaras
出处
期刊:Medical Physics [Wiley]
卷期号:49 (10): 6517-6526 被引量:1
标识
DOI:10.1002/mp.15830
摘要

During minimally invansive surgery (MIS) procedures, there exists an ever-growing/apparent need for providing computer generated visual feedback to the surgeon(s), through a visualization device. While multiple solutions have been proposed in the literature, there is limited evidence of such a system performing reliably in practice, and when it does, it is often tailored to a specific operation type. Another important aspect is regarding the usability of such systems, which typically include complicated and time-consuming steps, and often require the assistance of specialized personnel. In this study, we propose an auxiliary visualization system for surgeons, which includes streamlined process to use preoperative data of the patient, and apply it to two different MIS cases, namely, robot-assisted partial nephrectomy and robot-assisted partial lateral meniscectomy.The visualization and processing pipeline consists of an intraoperative 3D reconstruction of the surgical area, using an optimized version of the quasi-dense method, aimed to perform with good accuracy while maintaining real-time speed. A set of preprocessing and postprocessing techniques further contribute to the result by providing a smoother and more dense point cloud. DynamicFusion is used for the registration of the preoperative model to the intraoperative scene. Two silicon kidney phantoms and an ex-vivo porcine meniscus are used for evaluation, representing subjects for the examined surgical cases.Performance is evaluated qualitatively using the two datasets. The preoperative model of the subject is projected on top of the actual 2D image and also in 3D space. The model is superimposed on top of the actual physical structure it represents, and remains in the correct position throughout the experiments, even when abrupt camera movements are taking place. Finally, when deformation is introduced, the model is deformed as well, resembling the real subject's structure.Results demonstrate and validate the use of the presented algorithms for each separate task of the pipeline. A complete methodology to provide surgeon(s) with visual information during surgery is presented. Its operation is evaluated over two different surgical scenarios, paving the way for a single visualization methodology that can adapt and perform robustly for multiple cases, with minimal effort.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sweetbearm应助通~采纳,获得10
1秒前
1秒前
1秒前
小田心发布了新的文献求助10
1秒前
甜筒发布了新的文献求助10
2秒前
Steve发布了新的文献求助10
3秒前
mjc完成签到 ,获得积分10
3秒前
研一小刘发布了新的文献求助10
3秒前
3秒前
芳芳发布了新的文献求助10
3秒前
宵宵完成签到,获得积分10
3秒前
斯文黎云发布了新的文献求助10
4秒前
5秒前
科研通AI5应助Yiiimmmwang采纳,获得10
5秒前
遊星完成签到,获得积分10
5秒前
可靠嘉懿完成签到 ,获得积分10
6秒前
旅顺口老李完成签到 ,获得积分10
6秒前
leon发布了新的文献求助30
6秒前
lalala发布了新的文献求助10
6秒前
dingdong发布了新的文献求助10
6秒前
辛勤的仰发布了新的文献求助10
6秒前
科研通AI2S应助白华苍松采纳,获得10
6秒前
Kiyotaka发布了新的文献求助30
6秒前
xiaozhenA发布了新的文献求助10
6秒前
Steve完成签到,获得积分10
7秒前
p8793428发布了新的文献求助30
7秒前
科研通AI2S应助zrk采纳,获得10
7秒前
7秒前
8秒前
8秒前
科研通AI2S应助lkc采纳,获得10
8秒前
雾见春完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
lmy完成签到 ,获得积分10
9秒前
平常的可乐完成签到 ,获得积分10
10秒前
10秒前
邵初蓝完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794