A 3D reconstruction method of porous media based on improved WGAN-GP

计算机科学 人工智能 卷积神经网络 卷积(计算机科学) 特征(语言学) 模式识别(心理学) 三维重建 多孔介质 修补 深度学习 图层(电子) 生成对抗网络 人工神经网络 图像(数学) 多孔性 地质学 材料科学 哲学 语言学 岩土工程 复合材料
作者
Ting Zhang,Qingyang Liu,Tonghua Wang,Xin Ji,Yi Du
出处
期刊:Computers & Geosciences [Elsevier BV]
卷期号:165: 105151-105151 被引量:6
标识
DOI:10.1016/j.cageo.2022.105151
摘要

The reconstruction of porous media is important to the development of petroleum industry, but the accurate characterization of the internal structures of porous media is difficult since these structures cannot be directly described using some formulae or languages. As one of the mainstream technologies for reconstructing porous media, numerical reconstruction technology can reconstruct pore structures similar to the real pore spaces through numerical generation and has the advantages of low cost and good reusability compared to imaging methods. One of the recent variants of generative adversarial network (GAN), Wasserstein GAN with gradient penalty (WGAN-GP), has shown favorable capability of extracting features for generating or reconstructing similar images with training images. Therefore, a 3D reconstruction method of porous media based on an improved WGAN-GP is presented in this paper, in which the original multi-layer perceptron (MLP) in WGAN-GP is replaced by convolutional neural network (CNN) since CNN is composed of deep convolution structures with strong feature learning abilities. The proposed method uses real 3D images as training images and finally generates 3D reconstruction of porous media with the features of training images. Compared with some traditional numerical generation methods and WGAN-GP, this method has certain advantages in terms of reconstruction quality and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
999完成签到,获得积分20
刚刚
yookia应助科研通管家采纳,获得10
1秒前
coolkid应助科研通管家采纳,获得10
1秒前
麦乐迪应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
2秒前
coolkid应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
2秒前
Ava应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
开朗艳一发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
天天快乐应助雪1214采纳,获得10
3秒前
xuan完成签到,获得积分10
4秒前
独特的兰发布了新的文献求助10
4秒前
1111应助不散的和弦采纳,获得10
5秒前
6秒前
6秒前
zyaner发布了新的文献求助10
6秒前
6秒前
zh发布了新的文献求助10
7秒前
嘻嘻嘻发布了新的文献求助10
8秒前
8秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961269
求助须知:如何正确求助?哪些是违规求助? 3507536
关于积分的说明 11136688
捐赠科研通 3239991
什么是DOI,文献DOI怎么找? 1790625
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803199