Intelligent Fault Diagnosis of Bearings under Variable Working Conditions and Small Samples with Generative Adversarial Network

断层(地质) 分类器(UML) 计算机科学 人工智能 对抗制 方位(导航) 适应性 机器学习 数据挖掘 信号(编程语言) 样品(材料) 模式识别(心理学) 工程类 地震学 地质学 生物 化学 程序设计语言 色谱法 生态学
作者
Shushuai Xie,Wei Cheng,Zelin Nie,Xuefeng Chen
标识
DOI:10.1109/phm2022-london52454.2022.00037
摘要

Intelligent fault diagnosis of bearing based on data drive has been a hot research field in recent years and achieved lots of results. However, current research mainly faces: 1) It is a great challenge to develop an effective intelligent diagnosis method in practical industrial scenarios because of the lack of fault signals in small samples; 2) It has poor adaptability to intelligent fault diagnosis under variable working conditions. Aiming at the above problems, an intelligent fault diagnosis method for bearings under variable working conditions and small samples based on generative adversarial network is proposed. Firstly, the signal highly similar to the actual fault signal is generated through generative adversarial network training and this part of the signal can be used as training data to solve the problem of deficient small sample fault dataset. Then, the similar fault characteristics learned from the data of a certain working condition through domain confrontation training are transferred to the target working condition. Finally, fault diagnosis is realized on the target domain data by the classifier trained on the fault features. The proposed method is evaluated through the Case Western Reserve University (CWRU) bearing dataset with the result show that it has high fault classification accuracy and transferability under the condition of small samples and variable working conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
arya完成签到,获得积分10
刚刚
2秒前
bkagyin应助繁星采纳,获得10
3秒前
tang完成签到,获得积分10
4秒前
5秒前
Rachel发布了新的文献求助30
5秒前
123发布了新的文献求助10
6秒前
6秒前
长安发布了新的文献求助10
6秒前
李爱国应助wengi94采纳,获得10
7秒前
喜东东完成签到,获得积分10
7秒前
tang发布了新的文献求助30
8秒前
8秒前
ZJQ发布了新的文献求助10
10秒前
11秒前
12秒前
Yuka发布了新的文献求助10
13秒前
13秒前
15秒前
蓝灵发布了新的文献求助10
15秒前
wengi94发布了新的文献求助10
17秒前
yar应助老实大米采纳,获得10
18秒前
19秒前
哼哼怪发布了新的文献求助30
21秒前
今后应助Yuka采纳,获得30
21秒前
23秒前
ZJQ完成签到,获得积分20
23秒前
追寻夜香发布了新的文献求助10
25秒前
25秒前
ceeray23应助科研通管家采纳,获得10
25秒前
彭于晏应助科研通管家采纳,获得10
25秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
小宋应助科研通管家采纳,获得10
25秒前
藤椒辣鱼应助科研通管家采纳,获得10
25秒前
丘比特应助科研通管家采纳,获得10
25秒前
25秒前
酷波er应助科研通管家采纳,获得10
25秒前
丘比特应助科研通管家采纳,获得10
25秒前
26秒前
NY发布了新的文献求助10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466427
求助须知:如何正确求助?哪些是违规求助? 3059206
关于积分的说明 9065452
捐赠科研通 2749686
什么是DOI,文献DOI怎么找? 1508697
科研通“疑难数据库(出版商)”最低求助积分说明 696996
邀请新用户注册赠送积分活动 696746