亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Spatial–Temporal Graph Model for Pronunciation Feature Prediction of Chinese Poetry

计算机科学 发音 人工智能 语音识别 Mel倒谱 阅读(过程) 图形 编码器 特征(语言学) 自然语言处理 模式识别(心理学) 特征提取 语言学 哲学 理论计算机科学 操作系统
作者
Qing Wang,Weiping Liu,Wang Xiu,Xinghong Chen,Guannan Chen,Qingxiang Wu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (12): 10294-10308 被引量:12
标识
DOI:10.1109/tnnls.2022.3165554
摘要

With the development of artificial intelligence, speech recognition and prediction have become one of the important research domains with wild applications, such as intelligent control, education, individual identification, and emotion analysis. Chinese poetry reading contains rich features of continuous pronunciations, such as mood, emotion, rhythm schemes, lyric reading, and artistic expression. Therefore, the prediction of the pronunciation characteristics of a Chinese poetry reading is the significance for the presentation of high-level machine intelligence and has the potential to create a high-level intelligent system for teaching children to read Tang poetry. Mel frequency cepstral coefficient (MFCC) is currently used to present important speech features. Due to the complexity and high degree of nonlinearity in poetry reading, however, there is a tough challenge facing accurate pronunciation feature prediction, that is, how to model complex spatial correlations and time dynamics, such as rhyme schemes. As for many current methods, they ignore the spatial and temporal characteristics in MFCC presentation. In addition, these methods are subjected to certain limitations on prediction for long-term performance. In order to solve these problems, we propose a novel spatial-temporal graph model (STGM-MHA) based on multihead attention for the purpose of pronunciation feature prediction of Chinese poetry. The STGM-MHA is designed using an encoder-decoder structure. The encoder compresses the data into a hidden space representation, while the decoder reconstructs the hidden space representation as output. In the model, a novel gated recurrent unit (GRU) module (AGRU) based on multihead attention is proposed to extract the spatial and temporal features of MFCC data effectively. The evaluation comparison of our proposed model versus state-of-the-art methods in six datasets reveals the clear advantage of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糊涂的剑完成签到,获得积分20
刚刚
1秒前
4秒前
糊涂的剑发布了新的文献求助10
4秒前
邓明完成签到,获得积分10
4秒前
科研捣蛋鬼完成签到,获得积分10
5秒前
科研通AI2S应助糊涂的剑采纳,获得10
10秒前
香蕉觅云应助懒洋洋采纳,获得10
10秒前
江锦雯发布了新的文献求助10
11秒前
思源应助tinbenny采纳,获得10
15秒前
ppl关闭了ppl文献求助
16秒前
香蕉觅云应助papi采纳,获得10
16秒前
江锦雯完成签到,获得积分10
17秒前
小刘完成签到,获得积分10
18秒前
25秒前
schuang完成签到,获得积分0
27秒前
crash发布了新的文献求助10
41秒前
顾矜应助CX采纳,获得200
1分钟前
crash完成签到,获得积分10
1分钟前
搜集达人应助有趣的银采纳,获得10
1分钟前
1分钟前
SppikeFPS完成签到,获得积分10
1分钟前
2分钟前
2分钟前
赘婿应助Tiamo采纳,获得10
2分钟前
taster发布了新的文献求助10
2分钟前
2分钟前
zhuzhu完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
坚强的秋白完成签到,获得积分10
2分钟前
MM发布了新的文献求助10
2分钟前
火星上白柏完成签到,获得积分10
3分钟前
xiaoyu完成签到,获得积分10
3分钟前
ding应助sanner采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
sanner发布了新的文献求助10
3分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232655
求助须知:如何正确求助?哪些是违规求助? 4401931
关于积分的说明 13699464
捐赠科研通 4268321
什么是DOI,文献DOI怎么找? 2342519
邀请新用户注册赠送积分活动 1339526
关于科研通互助平台的介绍 1296223