A Spatial–Temporal Graph Model for Pronunciation Feature Prediction of Chinese Poetry

计算机科学 发音 人工智能 语音识别 Mel倒谱 阅读(过程) 图形 编码器 特征(语言学) 自然语言处理 模式识别(心理学) 特征提取 语言学 哲学 理论计算机科学 操作系统
作者
Qing Wang,Weiping Liu,Wang Xiu,Xinghong Chen,Guannan Chen,Qingxiang Wu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (12): 10294-10308 被引量:12
标识
DOI:10.1109/tnnls.2022.3165554
摘要

With the development of artificial intelligence, speech recognition and prediction have become one of the important research domains with wild applications, such as intelligent control, education, individual identification, and emotion analysis. Chinese poetry reading contains rich features of continuous pronunciations, such as mood, emotion, rhythm schemes, lyric reading, and artistic expression. Therefore, the prediction of the pronunciation characteristics of a Chinese poetry reading is the significance for the presentation of high-level machine intelligence and has the potential to create a high-level intelligent system for teaching children to read Tang poetry. Mel frequency cepstral coefficient (MFCC) is currently used to present important speech features. Due to the complexity and high degree of nonlinearity in poetry reading, however, there is a tough challenge facing accurate pronunciation feature prediction, that is, how to model complex spatial correlations and time dynamics, such as rhyme schemes. As for many current methods, they ignore the spatial and temporal characteristics in MFCC presentation. In addition, these methods are subjected to certain limitations on prediction for long-term performance. In order to solve these problems, we propose a novel spatial-temporal graph model (STGM-MHA) based on multihead attention for the purpose of pronunciation feature prediction of Chinese poetry. The STGM-MHA is designed using an encoder-decoder structure. The encoder compresses the data into a hidden space representation, while the decoder reconstructs the hidden space representation as output. In the model, a novel gated recurrent unit (GRU) module (AGRU) based on multihead attention is proposed to extract the spatial and temporal features of MFCC data effectively. The evaluation comparison of our proposed model versus state-of-the-art methods in six datasets reveals the clear advantage of the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智橘子完成签到,获得积分10
刚刚
1秒前
乐乐应助LL采纳,获得10
1秒前
1秒前
桐桐应助坚强不言采纳,获得10
2秒前
自由大叔发布了新的文献求助10
2秒前
2秒前
zxs完成签到,获得积分10
3秒前
我爱乒乓球完成签到 ,获得积分10
3秒前
灵巧蓉完成签到,获得积分10
3秒前
3秒前
4秒前
Wenroy发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
现代谷芹完成签到 ,获得积分10
5秒前
子淇发布了新的文献求助10
5秒前
jzy完成签到,获得积分10
5秒前
刻苦羽毛完成签到 ,获得积分10
6秒前
小刘同学完成签到,获得积分10
6秒前
ice贝完成签到,获得积分10
6秒前
6秒前
高贵振家发布了新的文献求助10
6秒前
LiuJG关注了科研通微信公众号
6秒前
6秒前
菠萝汁完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
andjdd完成签到,获得积分10
8秒前
8秒前
唉呦嘿完成签到,获得积分10
8秒前
机智橘子发布了新的文献求助10
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
调皮蛋发布了新的文献求助30
9秒前
799完成签到 ,获得积分10
9秒前
香蕉觅云应助奋斗的鹏飞采纳,获得10
10秒前
11秒前
iNk应助寒冷威采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707903
求助须知:如何正确求助?哪些是违规求助? 5186065
关于积分的说明 15251923
捐赠科研通 4861066
什么是DOI,文献DOI怎么找? 2609196
邀请新用户注册赠送积分活动 1559865
关于科研通互助平台的介绍 1517651