A Spatial–Temporal Graph Model for Pronunciation Feature Prediction of Chinese Poetry

计算机科学 发音 人工智能 语音识别 Mel倒谱 阅读(过程) 图形 编码器 特征(语言学) 自然语言处理 模式识别(心理学) 特征提取 语言学 哲学 理论计算机科学 操作系统
作者
Qing Wang,Weiping Liu,Wang Xiu,Xinghong Chen,Guannan Chen,Qingxiang Wu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (12): 10294-10308 被引量:12
标识
DOI:10.1109/tnnls.2022.3165554
摘要

With the development of artificial intelligence, speech recognition and prediction have become one of the important research domains with wild applications, such as intelligent control, education, individual identification, and emotion analysis. Chinese poetry reading contains rich features of continuous pronunciations, such as mood, emotion, rhythm schemes, lyric reading, and artistic expression. Therefore, the prediction of the pronunciation characteristics of a Chinese poetry reading is the significance for the presentation of high-level machine intelligence and has the potential to create a high-level intelligent system for teaching children to read Tang poetry. Mel frequency cepstral coefficient (MFCC) is currently used to present important speech features. Due to the complexity and high degree of nonlinearity in poetry reading, however, there is a tough challenge facing accurate pronunciation feature prediction, that is, how to model complex spatial correlations and time dynamics, such as rhyme schemes. As for many current methods, they ignore the spatial and temporal characteristics in MFCC presentation. In addition, these methods are subjected to certain limitations on prediction for long-term performance. In order to solve these problems, we propose a novel spatial-temporal graph model (STGM-MHA) based on multihead attention for the purpose of pronunciation feature prediction of Chinese poetry. The STGM-MHA is designed using an encoder-decoder structure. The encoder compresses the data into a hidden space representation, while the decoder reconstructs the hidden space representation as output. In the model, a novel gated recurrent unit (GRU) module (AGRU) based on multihead attention is proposed to extract the spatial and temporal features of MFCC data effectively. The evaluation comparison of our proposed model versus state-of-the-art methods in six datasets reveals the clear advantage of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助哦哦哦采纳,获得10
刚刚
YHY完成签到,获得积分10
刚刚
刚刚
天天呼的海角完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
jiangcai完成签到,获得积分10
7秒前
Cherry完成签到,获得积分10
9秒前
正能量的可可可完成签到,获得积分10
9秒前
tuo zhang发布了新的文献求助10
12秒前
草莓养乐多完成签到 ,获得积分10
12秒前
糊涂完成签到,获得积分10
12秒前
哦哦哦发布了新的文献求助10
12秒前
in完成签到 ,获得积分10
13秒前
pilot完成签到,获得积分10
15秒前
劣根完成签到,获得积分10
16秒前
Liang发布了新的文献求助20
16秒前
18秒前
19秒前
曾小莹完成签到,获得积分10
19秒前
苏信怜完成签到,获得积分10
20秒前
23秒前
大气灵枫发布了新的文献求助10
23秒前
nn发布了新的文献求助10
24秒前
tuo zhang完成签到,获得积分10
26秒前
务实的绝悟完成签到,获得积分10
26秒前
怡然问晴发布了新的文献求助10
28秒前
开拖拉机的医学僧完成签到 ,获得积分10
29秒前
体贴凌柏发布了新的文献求助10
30秒前
Kinn完成签到,获得积分10
31秒前
31秒前
华仔应助枕星采纳,获得10
31秒前
Perry应助科研通管家采纳,获得30
32秒前
Jasper应助科研通管家采纳,获得10
32秒前
Jasper应助科研通管家采纳,获得30
32秒前
共享精神应助科研通管家采纳,获得30
32秒前
33秒前
无花果应助科研通管家采纳,获得10
33秒前
小二郎应助科研通管家采纳,获得10
33秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029