A Spatial–Temporal Graph Model for Pronunciation Feature Prediction of Chinese Poetry

计算机科学 发音 人工智能 语音识别 Mel倒谱 阅读(过程) 图形 编码器 特征(语言学) 自然语言处理 模式识别(心理学) 特征提取 语言学 哲学 理论计算机科学 操作系统
作者
Qing Wang,Weiping Liu,Wang Xiu,Xinghong Chen,Guannan Chen,Qingxiang Wu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (12): 10294-10308 被引量:12
标识
DOI:10.1109/tnnls.2022.3165554
摘要

With the development of artificial intelligence, speech recognition and prediction have become one of the important research domains with wild applications, such as intelligent control, education, individual identification, and emotion analysis. Chinese poetry reading contains rich features of continuous pronunciations, such as mood, emotion, rhythm schemes, lyric reading, and artistic expression. Therefore, the prediction of the pronunciation characteristics of a Chinese poetry reading is the significance for the presentation of high-level machine intelligence and has the potential to create a high-level intelligent system for teaching children to read Tang poetry. Mel frequency cepstral coefficient (MFCC) is currently used to present important speech features. Due to the complexity and high degree of nonlinearity in poetry reading, however, there is a tough challenge facing accurate pronunciation feature prediction, that is, how to model complex spatial correlations and time dynamics, such as rhyme schemes. As for many current methods, they ignore the spatial and temporal characteristics in MFCC presentation. In addition, these methods are subjected to certain limitations on prediction for long-term performance. In order to solve these problems, we propose a novel spatial-temporal graph model (STGM-MHA) based on multihead attention for the purpose of pronunciation feature prediction of Chinese poetry. The STGM-MHA is designed using an encoder-decoder structure. The encoder compresses the data into a hidden space representation, while the decoder reconstructs the hidden space representation as output. In the model, a novel gated recurrent unit (GRU) module (AGRU) based on multihead attention is proposed to extract the spatial and temporal features of MFCC data effectively. The evaluation comparison of our proposed model versus state-of-the-art methods in six datasets reveals the clear advantage of the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
正直的雨双完成签到,获得积分10
刚刚
刚刚
1秒前
爆米花应助福路采纳,获得10
1秒前
你是我的唯一完成签到,获得积分10
1秒前
puyute完成签到,获得积分10
1秒前
烟花应助白瑾采纳,获得10
1秒前
2秒前
觉允若意发布了新的文献求助10
2秒前
科研通AI2S应助长风采纳,获得10
2秒前
嗯嗯嗯嗯发布了新的文献求助10
2秒前
2秒前
可靠的墨镜完成签到,获得积分10
2秒前
星辰大海应助李某采纳,获得10
2秒前
灿星发布了新的文献求助10
3秒前
mzbgnk完成签到,获得积分10
3秒前
十一完成签到 ,获得积分10
3秒前
阿甘发布了新的文献求助10
3秒前
今后应助你眼带笑采纳,获得10
3秒前
舒服的嚓茶关注了科研通微信公众号
3秒前
4秒前
yy发布了新的文献求助10
4秒前
ss完成签到,获得积分10
4秒前
卡卡西发布了新的文献求助10
4秒前
高小明发布了新的文献求助20
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
szp发布了新的文献求助10
6秒前
songhan完成签到,获得积分10
6秒前
病理小甜甜完成签到,获得积分10
6秒前
zzz完成签到,获得积分10
6秒前
无花果应助张某采纳,获得10
7秒前
研友_VZG7GZ应助Japrin采纳,获得10
7秒前
科研通AI6应助洁净的千凡采纳,获得10
7秒前
8秒前
核桃发布了新的文献求助10
8秒前
天天快乐应助qsj采纳,获得10
8秒前
8秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5614771
求助须知:如何正确求助?哪些是违规求助? 4699728
关于积分的说明 14904799
捐赠科研通 4740353
什么是DOI,文献DOI怎么找? 2547768
邀请新用户注册赠送积分活动 1511577
关于科研通互助平台的介绍 1473687