A Spatial–Temporal Graph Model for Pronunciation Feature Prediction of Chinese Poetry

计算机科学 发音 人工智能 语音识别 Mel倒谱 阅读(过程) 图形 编码器 特征(语言学) 自然语言处理 模式识别(心理学) 特征提取 语言学 哲学 理论计算机科学 操作系统
作者
Qing Wang,Weiping Liu,Wang Xiu,Xinghong Chen,Guannan Chen,Qingxiang Wu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (12): 10294-10308 被引量:12
标识
DOI:10.1109/tnnls.2022.3165554
摘要

With the development of artificial intelligence, speech recognition and prediction have become one of the important research domains with wild applications, such as intelligent control, education, individual identification, and emotion analysis. Chinese poetry reading contains rich features of continuous pronunciations, such as mood, emotion, rhythm schemes, lyric reading, and artistic expression. Therefore, the prediction of the pronunciation characteristics of a Chinese poetry reading is the significance for the presentation of high-level machine intelligence and has the potential to create a high-level intelligent system for teaching children to read Tang poetry. Mel frequency cepstral coefficient (MFCC) is currently used to present important speech features. Due to the complexity and high degree of nonlinearity in poetry reading, however, there is a tough challenge facing accurate pronunciation feature prediction, that is, how to model complex spatial correlations and time dynamics, such as rhyme schemes. As for many current methods, they ignore the spatial and temporal characteristics in MFCC presentation. In addition, these methods are subjected to certain limitations on prediction for long-term performance. In order to solve these problems, we propose a novel spatial-temporal graph model (STGM-MHA) based on multihead attention for the purpose of pronunciation feature prediction of Chinese poetry. The STGM-MHA is designed using an encoder-decoder structure. The encoder compresses the data into a hidden space representation, while the decoder reconstructs the hidden space representation as output. In the model, a novel gated recurrent unit (GRU) module (AGRU) based on multihead attention is proposed to extract the spatial and temporal features of MFCC data effectively. The evaluation comparison of our proposed model versus state-of-the-art methods in six datasets reveals the clear advantage of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
小蘑菇应助xiaomaxia采纳,获得10
1秒前
鹿c3完成签到,获得积分10
2秒前
Natscience发布了新的文献求助20
2秒前
SYLH应助Edward采纳,获得10
2秒前
2秒前
东方耀发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
smottom应助科研小菜鸡采纳,获得20
4秒前
aobadong完成签到,获得积分10
4秒前
拼搏听寒发布了新的文献求助10
4秒前
寒冷无色完成签到,获得积分10
4秒前
奋斗的醉柳完成签到,获得积分10
4秒前
老和山留下了新的社区评论
5秒前
瓜子发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
Don发布了新的文献求助50
6秒前
自信的小ping子完成签到,获得积分10
6秒前
6秒前
6秒前
Advance.Cheng发布了新的文献求助10
7秒前
orixero应助CCCCPUTA采纳,获得10
7秒前
123发布了新的文献求助10
8秒前
8秒前
高高发布了新的文献求助10
8秒前
今后应助美好斓采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
赘婿应助虚幻的涵柏采纳,获得30
9秒前
9秒前
10秒前
nature预备军完成签到 ,获得积分10
10秒前
LDDDGR发布了新的文献求助10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970572
求助须知:如何正确求助?哪些是违规求助? 3515219
关于积分的说明 11177438
捐赠科研通 3250374
什么是DOI,文献DOI怎么找? 1795265
邀请新用户注册赠送积分活动 875750
科研通“疑难数据库(出版商)”最低求助积分说明 805054