清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Spatial–Temporal Graph Model for Pronunciation Feature Prediction of Chinese Poetry

计算机科学 发音 人工智能 语音识别 Mel倒谱 阅读(过程) 图形 编码器 特征(语言学) 自然语言处理 模式识别(心理学) 特征提取 语言学 哲学 理论计算机科学 操作系统
作者
Qing Wang,Weiping Liu,Wang Xiu,Xinghong Chen,Guannan Chen,Qingxiang Wu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (12): 10294-10308 被引量:12
标识
DOI:10.1109/tnnls.2022.3165554
摘要

With the development of artificial intelligence, speech recognition and prediction have become one of the important research domains with wild applications, such as intelligent control, education, individual identification, and emotion analysis. Chinese poetry reading contains rich features of continuous pronunciations, such as mood, emotion, rhythm schemes, lyric reading, and artistic expression. Therefore, the prediction of the pronunciation characteristics of a Chinese poetry reading is the significance for the presentation of high-level machine intelligence and has the potential to create a high-level intelligent system for teaching children to read Tang poetry. Mel frequency cepstral coefficient (MFCC) is currently used to present important speech features. Due to the complexity and high degree of nonlinearity in poetry reading, however, there is a tough challenge facing accurate pronunciation feature prediction, that is, how to model complex spatial correlations and time dynamics, such as rhyme schemes. As for many current methods, they ignore the spatial and temporal characteristics in MFCC presentation. In addition, these methods are subjected to certain limitations on prediction for long-term performance. In order to solve these problems, we propose a novel spatial-temporal graph model (STGM-MHA) based on multihead attention for the purpose of pronunciation feature prediction of Chinese poetry. The STGM-MHA is designed using an encoder-decoder structure. The encoder compresses the data into a hidden space representation, while the decoder reconstructs the hidden space representation as output. In the model, a novel gated recurrent unit (GRU) module (AGRU) based on multihead attention is proposed to extract the spatial and temporal features of MFCC data effectively. The evaluation comparison of our proposed model versus state-of-the-art methods in six datasets reveals the clear advantage of the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xun发布了新的文献求助10
刚刚
qinghe完成签到 ,获得积分10
2秒前
小西完成签到 ,获得积分10
28秒前
xun完成签到,获得积分20
33秒前
39秒前
Lexi发布了新的文献求助10
42秒前
阿俊完成签到 ,获得积分10
50秒前
shhoing应助科研通管家采纳,获得10
52秒前
科研通AI6应助科研通管家采纳,获得10
52秒前
shhoing应助科研通管家采纳,获得10
52秒前
孤独巡礼完成签到,获得积分10
1分钟前
小鱼完成签到,获得积分10
1分钟前
Denvir完成签到 ,获得积分10
1分钟前
老石完成签到 ,获得积分10
2分钟前
清澈的爱只为中国完成签到 ,获得积分10
2分钟前
wushuimei完成签到 ,获得积分10
2分钟前
tomorrow发布了新的文献求助10
2分钟前
玉子完成签到 ,获得积分10
2分钟前
Karma完成签到 ,获得积分10
2分钟前
creep2020完成签到,获得积分10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
喜悦的唇彩完成签到,获得积分10
3分钟前
小白鞋完成签到 ,获得积分10
3分钟前
香香香完成签到 ,获得积分10
3分钟前
chichenglin完成签到 ,获得积分0
3分钟前
Sendoh完成签到,获得积分10
3分钟前
lling完成签到 ,获得积分10
3分钟前
动听的秋白完成签到 ,获得积分10
4分钟前
4分钟前
一道光发布了新的文献求助30
4分钟前
Jasper应助一道光采纳,获得10
5分钟前
AW完成签到,获得积分10
5分钟前
一道光完成签到,获得积分10
5分钟前
科研通AI6应助听雨采纳,获得10
5分钟前
博姐37完成签到 ,获得积分10
5分钟前
5分钟前
wodetaiyangLLL完成签到 ,获得积分10
6分钟前
壮观的谷冬完成签到 ,获得积分0
6分钟前
听雨发布了新的文献求助10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558674
求助须知:如何正确求助?哪些是违规求助? 4643757
关于积分的说明 14671414
捐赠科研通 4585091
什么是DOI,文献DOI怎么找? 2515397
邀请新用户注册赠送积分活动 1489437
关于科研通互助平台的介绍 1460192