A Spatial–Temporal Graph Model for Pronunciation Feature Prediction of Chinese Poetry

计算机科学 发音 人工智能 语音识别 Mel倒谱 阅读(过程) 图形 编码器 特征(语言学) 自然语言处理 模式识别(心理学) 特征提取 语言学 理论计算机科学 操作系统 哲学
作者
Qing Wang,Weiping Liu,Wang Xiu,Xinghong Chen,Guannan Chen,Qingxiang Wu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (12): 10294-10308 被引量:12
标识
DOI:10.1109/tnnls.2022.3165554
摘要

With the development of artificial intelligence, speech recognition and prediction have become one of the important research domains with wild applications, such as intelligent control, education, individual identification, and emotion analysis. Chinese poetry reading contains rich features of continuous pronunciations, such as mood, emotion, rhythm schemes, lyric reading, and artistic expression. Therefore, the prediction of the pronunciation characteristics of a Chinese poetry reading is the significance for the presentation of high-level machine intelligence and has the potential to create a high-level intelligent system for teaching children to read Tang poetry. Mel frequency cepstral coefficient (MFCC) is currently used to present important speech features. Due to the complexity and high degree of nonlinearity in poetry reading, however, there is a tough challenge facing accurate pronunciation feature prediction, that is, how to model complex spatial correlations and time dynamics, such as rhyme schemes. As for many current methods, they ignore the spatial and temporal characteristics in MFCC presentation. In addition, these methods are subjected to certain limitations on prediction for long-term performance. In order to solve these problems, we propose a novel spatial-temporal graph model (STGM-MHA) based on multihead attention for the purpose of pronunciation feature prediction of Chinese poetry. The STGM-MHA is designed using an encoder-decoder structure. The encoder compresses the data into a hidden space representation, while the decoder reconstructs the hidden space representation as output. In the model, a novel gated recurrent unit (GRU) module (AGRU) based on multihead attention is proposed to extract the spatial and temporal features of MFCC data effectively. The evaluation comparison of our proposed model versus state-of-the-art methods in six datasets reveals the clear advantage of the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luotuo发布了新的文献求助10
1秒前
qin完成签到,获得积分10
1秒前
1秒前
北冰石发布了新的文献求助10
2秒前
占囧发布了新的文献求助10
2秒前
3秒前
ding应助shuyu采纳,获得10
3秒前
3秒前
细心的小熊猫完成签到,获得积分20
3秒前
wcy发布了新的文献求助10
3秒前
科研通AI6.1应助Rui采纳,获得10
4秒前
23发布了新的文献求助10
4秒前
共享精神应助白桃味的夏采纳,获得10
4秒前
烟花应助猪猪hero采纳,获得30
4秒前
花花发布了新的文献求助10
4秒前
4秒前
科研狗完成签到 ,获得积分10
5秒前
科目三应助slx采纳,获得10
5秒前
眉间雪完成签到,获得积分10
5秒前
任性醉香关注了科研通微信公众号
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
Ava应助yier采纳,获得10
7秒前
shangfeng发布了新的文献求助10
7秒前
尊敬的花卷完成签到 ,获得积分10
7秒前
cookie发布了新的文献求助10
8秒前
8秒前
Andy1201应助花哨采纳,获得10
8秒前
8秒前
施宇宙发布了新的文献求助10
8秒前
田様应助道儿采纳,获得10
9秒前
一一完成签到,获得积分10
9秒前
ghpi完成签到,获得积分10
9秒前
孤独的幻悲完成签到,获得积分10
10秒前
11秒前
11秒前
hhhi完成签到,获得积分10
11秒前
11秒前
隐形曼青应助Echo采纳,获得10
12秒前
流水应助ZhouLu采纳,获得20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5768619
求助须知:如何正确求助?哪些是违规求助? 5576280
关于积分的说明 15419148
捐赠科研通 4902454
什么是DOI,文献DOI怎么找? 2637767
邀请新用户注册赠送积分活动 1585694
关于科研通互助平台的介绍 1540805