Hybridized neural network for upper limb movement detection using EEG signals

计算机科学 人工智能 肘关节屈曲 模式识别(心理学) 人工神经网络 运动(音乐) 峰度 前臂 灵敏度(控制系统) 过程(计算) 相关系数 肘部 语音识别 数学 工程类 机器学习 统计 医学 哲学 外科 病理 电子工程 操作系统 美学
作者
G. Vidhya Sagar
出处
期刊:Sensor Review [Emerald Publishing Limited]
卷期号:42 (3): 294-302
标识
DOI:10.1108/sr-10-2020-0226
摘要

Purpose This paper aims to propose a new upper limb movement classification with two phases like pre-processing and classification. Investigation of human limb movements is a significant topic in biomedical engineering, particularly for treating patients. Usually, the limb movement is examined by analyzing the signals that occurred by the movements. However, only few attempts were made to explore the correlations among the movements that are recognized by the human brain. Design/methodology/approach The initial process is the pre-processing that is performed for detecting and removing noisy channels. The artifacts are marked by band-pass filtering that discovers the values below and above thresholds of 200 and –200 µV, correspondingly. It also discovers the trials with unusual joint probabilities, and the trials with unusual kurtosis are also determined using this method. After this, the pre-processed signals are subjected to a classification process, where the neural network (NN) model is used. The model finally classifies six movements like “elbow extension, elbow flexion, forearm pronation, forearm supination, hand open, and hand close,” respectively. To make the classification more accurate, this paper intends to optimize the weights of NN by a new hybrid algorithm known as bypass integrated jaya algorithm (BI-JA) that hybrids the concept of rider optimization algorithm (ROA) and JA. Finally, the performance of the proposed model is proved over other conventional models concerning certain measures like accuracy, sensitivity, specificity, and precision, false positive rate, false negative rate, false discovery rate, F 1 -score and Matthews correlation coefficient. Findings From the analysis, the adopted BI-JA-NN model in terms of accuracy was high at 80th population size was 7.85%, 3.66%, 7.53%, 2.09% and 0.52% better than Levenberg–Marquardt (LM)-NN, firefly (FF)-NN, JA-NN, whale optimization algorithm (WOA)-NN and ROA-NN algorithms. On considering sensitivity, the proposed method was 2%, 0.2%, 5.01%, 0.29% and 0.3% better than LM-NN, FF-NN, JA-NN, WOA-NN and ROA-NN algorithms at 50th population size. Also, the specificity of the implemented BI-JA-NN model at 80th population size was 7.47%, 4%, 7.05%, 2.1% and 0.5% better than LM-NN, FF-NN, JA-NN, WOA-NN and ROA-NN algorithms. Thus, the betterment of the presented scheme was proved. Originality/value This paper adopts the latest optimization algorithm called BI-JA to introduce a new upper limb movement classification with two phases like pre-processing and classification. This is the first work that uses BI-JA based optimization for improving the upper limb movement detection using electroencephalography signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
WYH完成签到,获得积分10
1秒前
AKRSZZRQ完成签到 ,获得积分10
1秒前
scijiujiu完成签到,获得积分20
2秒前
KL完成签到 ,获得积分10
2秒前
领导范儿应助zhuzhu采纳,获得10
2秒前
ada发布了新的文献求助30
3秒前
有结果应助泯珉采纳,获得10
3秒前
寻觅发布了新的文献求助10
3秒前
dxm发布了新的文献求助10
4秒前
4秒前
Joyful完成签到,获得积分10
4秒前
biubiubiu发布了新的文献求助10
4秒前
小安完成签到,获得积分10
4秒前
li完成签到 ,获得积分10
5秒前
Lucas应助小易采纳,获得30
5秒前
酷波er应助灵境采纳,获得10
5秒前
6秒前
6秒前
奥利给肝了完成签到,获得积分10
7秒前
mu2phy发布了新的文献求助10
7秒前
8秒前
任斯完成签到 ,获得积分10
9秒前
9秒前
10秒前
愉快的孤晴完成签到,获得积分10
10秒前
打打应助Album采纳,获得10
10秒前
小韩儒儒完成签到,获得积分10
10秒前
努力的学发布了新的文献求助10
11秒前
zzzz发布了新的文献求助10
11秒前
科研通AI6应助Salt采纳,获得10
11秒前
Zx_1993应助人类智力巅峰采纳,获得10
11秒前
SS2D发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
溜了溜了完成签到,获得积分10
13秒前
chenxin1996发布了新的文献求助10
13秒前
无奈的盈发布了新的文献求助20
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950006
求助须知:如何正确求助?哪些是违规求助? 4213017
关于积分的说明 13102298
捐赠科研通 3994791
什么是DOI,文献DOI怎么找? 2186587
邀请新用户注册赠送积分活动 1201852
关于科研通互助平台的介绍 1115236