Hybridized neural network for upper limb movement detection using EEG signals

计算机科学 人工智能 肘关节屈曲 模式识别(心理学) 人工神经网络 运动(音乐) 峰度 前臂 灵敏度(控制系统) 过程(计算) 相关系数 肘部 语音识别 数学 工程类 机器学习 统计 医学 哲学 外科 病理 电子工程 操作系统 美学
作者
G. Vidhya Sagar
出处
期刊:Sensor Review [Emerald (MCB UP)]
卷期号:42 (3): 294-302
标识
DOI:10.1108/sr-10-2020-0226
摘要

Purpose This paper aims to propose a new upper limb movement classification with two phases like pre-processing and classification. Investigation of human limb movements is a significant topic in biomedical engineering, particularly for treating patients. Usually, the limb movement is examined by analyzing the signals that occurred by the movements. However, only few attempts were made to explore the correlations among the movements that are recognized by the human brain. Design/methodology/approach The initial process is the pre-processing that is performed for detecting and removing noisy channels. The artifacts are marked by band-pass filtering that discovers the values below and above thresholds of 200 and –200 µV, correspondingly. It also discovers the trials with unusual joint probabilities, and the trials with unusual kurtosis are also determined using this method. After this, the pre-processed signals are subjected to a classification process, where the neural network (NN) model is used. The model finally classifies six movements like “elbow extension, elbow flexion, forearm pronation, forearm supination, hand open, and hand close,” respectively. To make the classification more accurate, this paper intends to optimize the weights of NN by a new hybrid algorithm known as bypass integrated jaya algorithm (BI-JA) that hybrids the concept of rider optimization algorithm (ROA) and JA. Finally, the performance of the proposed model is proved over other conventional models concerning certain measures like accuracy, sensitivity, specificity, and precision, false positive rate, false negative rate, false discovery rate, F 1 -score and Matthews correlation coefficient. Findings From the analysis, the adopted BI-JA-NN model in terms of accuracy was high at 80th population size was 7.85%, 3.66%, 7.53%, 2.09% and 0.52% better than Levenberg–Marquardt (LM)-NN, firefly (FF)-NN, JA-NN, whale optimization algorithm (WOA)-NN and ROA-NN algorithms. On considering sensitivity, the proposed method was 2%, 0.2%, 5.01%, 0.29% and 0.3% better than LM-NN, FF-NN, JA-NN, WOA-NN and ROA-NN algorithms at 50th population size. Also, the specificity of the implemented BI-JA-NN model at 80th population size was 7.47%, 4%, 7.05%, 2.1% and 0.5% better than LM-NN, FF-NN, JA-NN, WOA-NN and ROA-NN algorithms. Thus, the betterment of the presented scheme was proved. Originality/value This paper adopts the latest optimization algorithm called BI-JA to introduce a new upper limb movement classification with two phases like pre-processing and classification. This is the first work that uses BI-JA based optimization for improving the upper limb movement detection using electroencephalography signals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
途中的人完成签到 ,获得积分10
1秒前
1秒前
1秒前
BowieHuang应助愉快的半双采纳,获得10
2秒前
蓝天应助愉快的半双采纳,获得10
2秒前
llf完成签到,获得积分10
2秒前
Allure发布了新的文献求助10
2秒前
2秒前
wyyt完成签到,获得积分10
3秒前
研友_VZG7GZ应助无声瀑布采纳,获得10
3秒前
3秒前
胖狗完成签到 ,获得积分10
3秒前
4秒前
Nell发布了新的文献求助10
4秒前
ding应助蠢蠢的死法采纳,获得10
4秒前
qqs完成签到,获得积分0
4秒前
5秒前
5秒前
BowieHuang应助热情初瑶采纳,获得10
6秒前
Hello应助隐形元绿采纳,获得10
6秒前
pio完成签到 ,获得积分10
6秒前
科研通AI2S应助ark861023采纳,获得10
6秒前
7秒前
霸气千易发布了新的文献求助10
7秒前
7秒前
浮浮世世发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
正反馈完成签到,获得积分10
8秒前
舒心灵萱发布了新的文献求助10
8秒前
善学以致用应助0610采纳,获得10
9秒前
9秒前
9秒前
dongzhiliang完成签到,获得积分10
10秒前
跨材料发布了新的社区帖子
10秒前
英俊的铭应助仔仔采纳,获得10
11秒前
小明发布了新的文献求助10
11秒前
12秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582755
求助须知:如何正确求助?哪些是违规求助? 4666874
关于积分的说明 14764127
捐赠科研通 4608899
什么是DOI,文献DOI怎么找? 2528885
邀请新用户注册赠送积分活动 1498196
关于科研通互助平台的介绍 1466887