Hybridized neural network for upper limb movement detection using EEG signals

计算机科学 人工智能 肘关节屈曲 模式识别(心理学) 人工神经网络 运动(音乐) 峰度 前臂 灵敏度(控制系统) 过程(计算) 相关系数 肘部 语音识别 数学 工程类 机器学习 统计 医学 哲学 外科 病理 电子工程 操作系统 美学
作者
G. Vidhya Sagar
出处
期刊:Sensor Review [Emerald (MCB UP)]
卷期号:42 (3): 294-302
标识
DOI:10.1108/sr-10-2020-0226
摘要

Purpose This paper aims to propose a new upper limb movement classification with two phases like pre-processing and classification. Investigation of human limb movements is a significant topic in biomedical engineering, particularly for treating patients. Usually, the limb movement is examined by analyzing the signals that occurred by the movements. However, only few attempts were made to explore the correlations among the movements that are recognized by the human brain. Design/methodology/approach The initial process is the pre-processing that is performed for detecting and removing noisy channels. The artifacts are marked by band-pass filtering that discovers the values below and above thresholds of 200 and –200 µV, correspondingly. It also discovers the trials with unusual joint probabilities, and the trials with unusual kurtosis are also determined using this method. After this, the pre-processed signals are subjected to a classification process, where the neural network (NN) model is used. The model finally classifies six movements like “elbow extension, elbow flexion, forearm pronation, forearm supination, hand open, and hand close,” respectively. To make the classification more accurate, this paper intends to optimize the weights of NN by a new hybrid algorithm known as bypass integrated jaya algorithm (BI-JA) that hybrids the concept of rider optimization algorithm (ROA) and JA. Finally, the performance of the proposed model is proved over other conventional models concerning certain measures like accuracy, sensitivity, specificity, and precision, false positive rate, false negative rate, false discovery rate, F 1 -score and Matthews correlation coefficient. Findings From the analysis, the adopted BI-JA-NN model in terms of accuracy was high at 80th population size was 7.85%, 3.66%, 7.53%, 2.09% and 0.52% better than Levenberg–Marquardt (LM)-NN, firefly (FF)-NN, JA-NN, whale optimization algorithm (WOA)-NN and ROA-NN algorithms. On considering sensitivity, the proposed method was 2%, 0.2%, 5.01%, 0.29% and 0.3% better than LM-NN, FF-NN, JA-NN, WOA-NN and ROA-NN algorithms at 50th population size. Also, the specificity of the implemented BI-JA-NN model at 80th population size was 7.47%, 4%, 7.05%, 2.1% and 0.5% better than LM-NN, FF-NN, JA-NN, WOA-NN and ROA-NN algorithms. Thus, the betterment of the presented scheme was proved. Originality/value This paper adopts the latest optimization algorithm called BI-JA to introduce a new upper limb movement classification with two phases like pre-processing and classification. This is the first work that uses BI-JA based optimization for improving the upper limb movement detection using electroencephalography signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彭于晏应助小白采纳,获得10
1秒前
小宝完成签到,获得积分10
2秒前
2秒前
SXYYY发布了新的文献求助10
4秒前
所所应助jie采纳,获得10
6秒前
00完成签到,获得积分10
7秒前
Eunhyo发布了新的文献求助10
8秒前
9秒前
淡淡de橙子完成签到,获得积分10
9秒前
10秒前
Fairy完成签到 ,获得积分10
10秒前
少年发布了新的文献求助10
11秒前
14秒前
阿钉发布了新的文献求助10
15秒前
小蚊子发布了新的文献求助10
15秒前
香蕉觅云应助Cindy采纳,获得10
16秒前
huadao完成签到,获得积分10
16秒前
乔心发布了新的文献求助10
16秒前
17秒前
18秒前
无名老大应助王二虎采纳,获得50
19秒前
棉花糖吖吖吖完成签到 ,获得积分10
19秒前
诗懿发布了新的文献求助10
20秒前
科研通AI2S应助qizhi采纳,获得20
20秒前
25秒前
沉默寻凝完成签到,获得积分10
26秒前
26秒前
26秒前
谦让小松鼠完成签到 ,获得积分10
27秒前
28秒前
Cindy发布了新的文献求助10
31秒前
32秒前
34秒前
wgs623完成签到 ,获得积分10
36秒前
36秒前
38秒前
39秒前
jie发布了新的文献求助10
39秒前
健身boy完成签到,获得积分10
41秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352591
求助须知:如何正确求助?哪些是违规求助? 2977668
关于积分的说明 8680688
捐赠科研通 2658572
什么是DOI,文献DOI怎么找? 1455884
科研通“疑难数据库(出版商)”最低求助积分说明 674150
邀请新用户注册赠送积分活动 664709