Hybridized neural network for upper limb movement detection using EEG signals

计算机科学 人工智能 肘关节屈曲 模式识别(心理学) 人工神经网络 运动(音乐) 峰度 前臂 灵敏度(控制系统) 过程(计算) 相关系数 肘部 语音识别 数学 工程类 机器学习 统计 医学 哲学 外科 病理 电子工程 操作系统 美学
作者
G. Vidhya Sagar
出处
期刊:Sensor Review [Emerald Publishing Limited]
卷期号:42 (3): 294-302
标识
DOI:10.1108/sr-10-2020-0226
摘要

Purpose This paper aims to propose a new upper limb movement classification with two phases like pre-processing and classification. Investigation of human limb movements is a significant topic in biomedical engineering, particularly for treating patients. Usually, the limb movement is examined by analyzing the signals that occurred by the movements. However, only few attempts were made to explore the correlations among the movements that are recognized by the human brain. Design/methodology/approach The initial process is the pre-processing that is performed for detecting and removing noisy channels. The artifacts are marked by band-pass filtering that discovers the values below and above thresholds of 200 and –200 µV, correspondingly. It also discovers the trials with unusual joint probabilities, and the trials with unusual kurtosis are also determined using this method. After this, the pre-processed signals are subjected to a classification process, where the neural network (NN) model is used. The model finally classifies six movements like “elbow extension, elbow flexion, forearm pronation, forearm supination, hand open, and hand close,” respectively. To make the classification more accurate, this paper intends to optimize the weights of NN by a new hybrid algorithm known as bypass integrated jaya algorithm (BI-JA) that hybrids the concept of rider optimization algorithm (ROA) and JA. Finally, the performance of the proposed model is proved over other conventional models concerning certain measures like accuracy, sensitivity, specificity, and precision, false positive rate, false negative rate, false discovery rate, F 1 -score and Matthews correlation coefficient. Findings From the analysis, the adopted BI-JA-NN model in terms of accuracy was high at 80th population size was 7.85%, 3.66%, 7.53%, 2.09% and 0.52% better than Levenberg–Marquardt (LM)-NN, firefly (FF)-NN, JA-NN, whale optimization algorithm (WOA)-NN and ROA-NN algorithms. On considering sensitivity, the proposed method was 2%, 0.2%, 5.01%, 0.29% and 0.3% better than LM-NN, FF-NN, JA-NN, WOA-NN and ROA-NN algorithms at 50th population size. Also, the specificity of the implemented BI-JA-NN model at 80th population size was 7.47%, 4%, 7.05%, 2.1% and 0.5% better than LM-NN, FF-NN, JA-NN, WOA-NN and ROA-NN algorithms. Thus, the betterment of the presented scheme was proved. Originality/value This paper adopts the latest optimization algorithm called BI-JA to introduce a new upper limb movement classification with two phases like pre-processing and classification. This is the first work that uses BI-JA based optimization for improving the upper limb movement detection using electroencephalography signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏silence发布了新的文献求助10
刚刚
知北完成签到,获得积分10
刚刚
as完成签到,获得积分10
刚刚
1秒前
1秒前
煜清清完成签到 ,获得积分10
1秒前
菜菜发布了新的文献求助20
1秒前
zzz发布了新的文献求助10
1秒前
花仙子完成签到,获得积分20
2秒前
iiing完成签到,获得积分10
2秒前
3秒前
Sen完成签到 ,获得积分10
3秒前
平常亦凝发布了新的文献求助10
3秒前
机智一曲完成签到 ,获得积分10
4秒前
4秒前
4秒前
讲座梅郎完成签到,获得积分10
5秒前
贵贵完成签到,获得积分10
5秒前
6秒前
852应助花仙子采纳,获得10
6秒前
迷你的迎南完成签到,获得积分10
6秒前
SYY发布了新的文献求助10
7秒前
panpanpan完成签到,获得积分10
7秒前
8秒前
8秒前
我又可以了完成签到,获得积分10
9秒前
FashionBoy应助LY采纳,获得10
9秒前
9秒前
10秒前
zlsuen完成签到,获得积分20
10秒前
10秒前
务实颜完成签到 ,获得积分10
10秒前
丘比特应助WWD采纳,获得10
10秒前
Star1983发布了新的文献求助10
11秒前
科研公主完成签到,获得积分10
11秒前
11秒前
我是海盗完成签到,获得积分10
11秒前
cheryl完成签到,获得积分10
11秒前
11秒前
平常亦凝完成签到,获得积分20
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582