A novel approach for cardiovascular disease prediction using machine learning algorithms

机器学习 计算机科学 人工智能 支持向量机 集成学习 阿达布思 分类器(UML) 二元分类 交叉验证 数据挖掘
作者
Saran Kumar Arunachalam,R. Rekha
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:34 (19) 被引量:3
标识
DOI:10.1002/cpe.7027
摘要

Abstract For the past few decades, cardiovascular disease has shown a binding impact on the country's mortality rate. The prediction of cardiovascular disease is more challenging during the process of clinical data analysis. The emergence of Machine Learning approaches paved the way to predict the disease and determining the consequences of the disease in the earlier stage to help the physicians during complex decision‐making. This work adopts k‐Nearest Neighbor as baseline classifier and ensemble X‐boost, Adaboost, and Random subspace classifier model to predict heart disease and predict the features of cardiovascular disease using Linear Support Vector Feature Measure (). This model considers the diverse combination of features to make the better classification process. The model shows superior performance with precision via Clinical Decision Support System. The factors that influence the cardiovascular disease need to predict, and better decision is taken during the critical condition. Here, the online available University of California Irvine (UCI) Machine Learning dataset is used for training and testing where 80% data is considered for training and 20% considered for testing purpose. The simulation is done in MATLAB 2020b simulation environment, and the outcomes are compared with various existing approaches. Here, performance metrics like accuracy, precision, F‐measure, stability rate, region of curve, and recall is measured to show the model efficiency. The prediction accuracy of the proposed model is 96% which is higher than existing approaches. The overall performance of proposed ensemble model is 96% accuracy, 97% precision, 95% sensitivity, 95% F‐measure, 93% Matthew's correlation coefficients, 4.53% False Positive Rate, 3.10% False Negative Rate, and 96% True Positive Rate, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玛卡巴卡完成签到,获得积分10
1秒前
Hannahcx发布了新的文献求助10
4秒前
有夜空的地方必然有星河完成签到 ,获得积分10
4秒前
凯文完成签到 ,获得积分10
4秒前
研友_LwlAgn发布了新的文献求助10
5秒前
6秒前
寻觅驳回了桐桐应助
7秒前
8秒前
华仔应助初雪平寒采纳,获得30
8秒前
9秒前
科研通AI2S应助zzd12318采纳,获得10
10秒前
chengmin完成签到 ,获得积分10
10秒前
Eikou完成签到,获得积分10
11秒前
yyuchen完成签到,获得积分10
11秒前
123发布了新的文献求助10
12秒前
13秒前
杨露发布了新的文献求助10
14秒前
调研昵称发布了新的文献求助10
14秒前
ding应助李昕123采纳,获得10
15秒前
jym完成签到,获得积分10
16秒前
16秒前
背后丹妗完成签到,获得积分10
18秒前
Yolo完成签到,获得积分10
18秒前
123完成签到,获得积分10
18秒前
小马甲应助听雨采纳,获得10
20秒前
若尘完成签到 ,获得积分10
21秒前
紫色哀伤完成签到,获得积分10
21秒前
yy关闭了yy文献求助
22秒前
22秒前
22秒前
22秒前
小一完成签到,获得积分10
24秒前
ShowMaker应助Yolo采纳,获得20
24秒前
25秒前
yyuchen发布了新的文献求助10
28秒前
28秒前
今后应助草莓熊采纳,获得10
28秒前
28秒前
泪雨煊完成签到,获得积分10
29秒前
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148089
求助须知:如何正确求助?哪些是违规求助? 2799137
关于积分的说明 7833616
捐赠科研通 2456348
什么是DOI,文献DOI怎么找? 1307222
科研通“疑难数据库(出版商)”最低求助积分说明 628086
版权声明 601655