亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

In Your Eyes: Modality Disentangling for Personality Analysis in Short Video

模式 计算机科学 一致性(知识库) 模态(人机交互) 人工智能 人格 特征(语言学) 机器学习 钥匙(锁) 心理学 社会科学 计算机安全 语言学 社会心理学 哲学 社会学
作者
Xiangguo Sun,Bo Liu,Liya Ai,Danni Liu,Qing Meng,Jiuxin Cao
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 982-993 被引量:11
标识
DOI:10.1109/tcss.2022.3161708
摘要

With the dramatic growth of various short video platforms, users are more likely to share their social stream online and make their social connections stronger. To better understand their preferences, personality analysis has attracted more attention. Unlike single modal data such as text or images, which is hard to comprehensively uncover one's personal traits, personality analysis on short video is verified to be much more accurate but also more challenging because of the huge gap between incompatible data modalities. We have noticed that the key problem is how to disentangle the complexity from multimodal data to find their consistency and uniqueness. In this article, we propose a novel video analysis framework for personality detection with visual, acoustic, and textual neural networks. Specifically, to enhance our model's sensitivity to personality detection, we first propose three deep learning channels to learn modal features. The framework can not only extract each modal feature but also learn time-varying pattern via a temporal alignment network. To identify the consistency and uniqueness across multiple modalities, we creatively propose to maximize the similarity of common information learned by a shared neural network across multiple modalities and extend the distance of exclusive information learned by private networks of different modalities. Extensive experiments on the real-world dataset demonstrate that our model can outperform existing baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桂魄完成签到,获得积分10
1秒前
六等于三二一完成签到 ,获得积分10
7秒前
kukudou2完成签到,获得积分20
12秒前
科研通AI5应助桂魄采纳,获得10
15秒前
浦肯野应助科研通管家采纳,获得20
21秒前
含糊的茹妖完成签到 ,获得积分10
29秒前
Raunio完成签到,获得积分10
44秒前
49秒前
从容梦玉发布了新的文献求助30
54秒前
59秒前
1分钟前
1分钟前
1分钟前
居居侠完成签到 ,获得积分10
1分钟前
1分钟前
一路微笑完成签到,获得积分10
1分钟前
CodeCraft应助从容梦玉采纳,获得10
1分钟前
满意人英完成签到,获得积分10
1分钟前
脑洞疼应助科研通管家采纳,获得30
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
巖龍完成签到,获得积分10
3分钟前
思源应助巖龍采纳,获得200
3分钟前
bkagyin应助谢雨馨采纳,获得10
3分钟前
4分钟前
谢雨馨发布了新的文献求助10
4分钟前
科研通AI5应助科研通管家采纳,获得30
4分钟前
浦肯野应助科研通管家采纳,获得20
4分钟前
超男完成签到 ,获得积分10
4分钟前
光年外发布了新的文献求助10
4分钟前
科研通AI5应助hy采纳,获得10
4分钟前
小马甲应助成社长采纳,获得10
4分钟前
4分钟前
4分钟前
成社长发布了新的文献求助10
4分钟前
4分钟前
4分钟前
hy发布了新的文献求助10
5分钟前
巖龍发布了新的文献求助200
5分钟前
5分钟前
5分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561959
求助须知:如何正确求助?哪些是违规求助? 3135525
关于积分的说明 9412503
捐赠科研通 2835932
什么是DOI,文献DOI怎么找? 1558802
邀请新用户注册赠送积分活动 728467
科研通“疑难数据库(出版商)”最低求助积分说明 716865