Bioactivity assessment of natural compounds using machine learning models trained on target similarity between drugs

相似性(几何) 成对比较 机器学习 人工智能 公制(单位) 随机森林 化学相似性 相关性 数量结构-活动关系 结构相似性 计算机科学 计算生物学 数学 生物 运营管理 几何学 经济 图像(数学)
作者
Vinita Periwal,Stefan Bassler,Sergej Andrejev,Natalia Gabrielli,Kaustubh R. Patil,Athanasios Typas,Kiran Raosaheb Patil
出处
期刊:PLOS Computational Biology [Public Library of Science]
卷期号:18 (4): e1010029-e1010029 被引量:19
标识
DOI:10.1371/journal.pcbi.1010029
摘要

Natural compounds constitute a rich resource of potential small molecule therapeutics. While experimental access to this resource is limited due to its vast diversity and difficulties in systematic purification, computational assessment of structural similarity with known therapeutic molecules offers a scalable approach. Here, we assessed functional similarity between natural compounds and approved drugs by combining multiple chemical similarity metrics and physicochemical properties using a machine-learning approach. We computed pairwise similarities between 1410 drugs for training classification models and used the drugs shared protein targets as class labels. The best performing models were random forest which gave an average area under the ROC of 0.9, Matthews correlation coefficient of 0.35, and F1 score of 0.33, suggesting that it captured the structure-activity relation well. The models were then used to predict protein targets of circa 11k natural compounds by comparing them with the drugs. This revealed therapeutic potential of several natural compounds, including those with support from previously published sources as well as those hitherto unexplored. We experimentally validated one of the predicted pair’s activities, viz., Cox-1 inhibition by 5-methoxysalicylic acid, a molecule commonly found in tea, herbs and spices. In contrast, another natural compound, 4-isopropylbenzoic acid, with the highest similarity score when considering most weighted similarity metric but not picked by our models, did not inhibit Cox-1. Our results demonstrate the utility of a machine-learning approach combining multiple chemical features for uncovering protein binding potential of natural compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助喜悦的皮卡丘采纳,获得10
1秒前
Ava发布了新的文献求助10
1秒前
于大本事发布了新的文献求助10
2秒前
2秒前
XMUh发布了新的文献求助10
3秒前
Tangyartie发布了新的文献求助10
4秒前
4秒前
pany应助gaoww采纳,获得10
4秒前
limz发布了新的文献求助10
5秒前
叶圣贤发布了新的文献求助10
6秒前
大炮台发布了新的文献求助10
7秒前
8秒前
科研通AI2S应助感动语蝶采纳,获得10
8秒前
华仔应助笑南采纳,获得10
8秒前
李虎完成签到 ,获得积分10
8秒前
青基立项发布了新的文献求助10
10秒前
英俊的如霜完成签到,获得积分10
10秒前
CHEN完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
16秒前
吐司炸弹发布了新的文献求助30
16秒前
栗子发布了新的文献求助10
17秒前
18秒前
Pepper发布了新的文献求助10
18秒前
gean发布了新的文献求助10
19秒前
19秒前
柳叶刀小猪应助漂洋过海采纳,获得30
19秒前
19秒前
21秒前
22秒前
红橙黄绿蓝靛紫111完成签到,获得积分10
23秒前
知12完成签到,获得积分10
23秒前
zzr真真97发布了新的文献求助10
23秒前
朴实山兰发布了新的文献求助10
23秒前
24秒前
Lll发布了新的文献求助10
25秒前
青基立项完成签到 ,获得积分10
25秒前
hzs发布了新的文献求助10
25秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207040
求助须知:如何正确求助?哪些是违规求助? 2856445
关于积分的说明 8104758
捐赠科研通 2521574
什么是DOI,文献DOI怎么找? 1354842
科研通“疑难数据库(出版商)”最低求助积分说明 642071
邀请新用户注册赠送积分活动 613343