Bioactivity assessment of natural compounds using machine learning models trained on target similarity between drugs

相似性(几何) 成对比较 机器学习 人工智能 公制(单位) 随机森林 化学相似性 相关性 数量结构-活动关系 结构相似性 计算机科学 计算生物学 数学 生物 运营管理 几何学 经济 图像(数学)
作者
Vinita Periwal,Stefan Bassler,Sergej Andrejev,Natalia Gabrielli,Kaustubh R. Patil,Athanasios Typas,Kiran Raosaheb Patil
出处
期刊:PLOS Computational Biology [Public Library of Science]
卷期号:18 (4): e1010029-e1010029 被引量:19
标识
DOI:10.1371/journal.pcbi.1010029
摘要

Natural compounds constitute a rich resource of potential small molecule therapeutics. While experimental access to this resource is limited due to its vast diversity and difficulties in systematic purification, computational assessment of structural similarity with known therapeutic molecules offers a scalable approach. Here, we assessed functional similarity between natural compounds and approved drugs by combining multiple chemical similarity metrics and physicochemical properties using a machine-learning approach. We computed pairwise similarities between 1410 drugs for training classification models and used the drugs shared protein targets as class labels. The best performing models were random forest which gave an average area under the ROC of 0.9, Matthews correlation coefficient of 0.35, and F1 score of 0.33, suggesting that it captured the structure-activity relation well. The models were then used to predict protein targets of circa 11k natural compounds by comparing them with the drugs. This revealed therapeutic potential of several natural compounds, including those with support from previously published sources as well as those hitherto unexplored. We experimentally validated one of the predicted pair’s activities, viz., Cox-1 inhibition by 5-methoxysalicylic acid, a molecule commonly found in tea, herbs and spices. In contrast, another natural compound, 4-isopropylbenzoic acid, with the highest similarity score when considering most weighted similarity metric but not picked by our models, did not inhibit Cox-1. Our results demonstrate the utility of a machine-learning approach combining multiple chemical features for uncovering protein binding potential of natural compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cai完成签到,获得积分10
刚刚
忧伤的绍辉完成签到 ,获得积分10
2秒前
研友_Zb1rln完成签到,获得积分10
8秒前
拼搏的飞薇完成签到,获得积分10
8秒前
10秒前
环走鱼尾纹完成签到 ,获得积分10
10秒前
虎子发布了新的文献求助30
13秒前
空白完成签到 ,获得积分10
13秒前
青黛完成签到 ,获得积分10
14秒前
HY完成签到 ,获得积分10
16秒前
无辜妙海完成签到,获得积分10
17秒前
Yun完成签到,获得积分10
21秒前
xsc完成签到,获得积分10
24秒前
比比谁的速度快应助wbh采纳,获得20
24秒前
比比谁的速度快应助wbh采纳,获得20
24秒前
105完成签到 ,获得积分10
24秒前
天天快乐应助wbh采纳,获得10
24秒前
西柚完成签到,获得积分10
25秒前
QQLL完成签到,获得积分10
28秒前
echo完成签到 ,获得积分10
28秒前
孝顺的诗桃完成签到,获得积分10
29秒前
稳重紫蓝完成签到 ,获得积分10
30秒前
Magali应助Yun采纳,获得30
31秒前
小宋应助Yun采纳,获得30
31秒前
玖月完成签到 ,获得积分10
33秒前
虎子完成签到,获得积分10
38秒前
十二完成签到 ,获得积分10
39秒前
43秒前
量子星尘发布了新的文献求助10
43秒前
CWC完成签到,获得积分10
50秒前
黄大小姐完成签到,获得积分10
56秒前
Hello应助猪猪hero采纳,获得10
57秒前
伊叶之丘完成签到 ,获得积分10
58秒前
孤独的珩完成签到,获得积分10
59秒前
1分钟前
研友_LMpo68完成签到 ,获得积分10
1分钟前
lynn完成签到 ,获得积分10
1分钟前
踏实的怜菡完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008763
求助须知:如何正确求助?哪些是违规求助? 3548409
关于积分的说明 11298823
捐赠科研通 3283064
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 886000
科研通“疑难数据库(出版商)”最低求助积分说明 811220