材料科学
Burgers向量
可塑性
位错
打滑(空气动力学)
休克(循环)
皮尔斯应力
凝聚态物理
成核
机械
结晶学
位错蠕变
物理
复合材料
热力学
化学
内科学
医学
作者
Long Guo,Liang Wang,Ning Gao,Yangchun Chen,Beibei Liu,Wangyu Hu,Shifang Xiao,Kun Wang,Fei Gao,Huiqiu Deng
标识
DOI:10.1016/j.ijplas.2022.103329
摘要
Tungsten (W) is a promising candidate material for future fusion reactors. The shock waves generated under high-energy neutron radiation can lead to the formation of prismatic interstitial dislocation loops (PIDLs). To understand the details of the mechanisms, the interaction between the shock waves and PIDL with Burgers vector of 1/2<111> was studied by using nonequilibrium molecular dynamics (NEMD) simulation. The shock-induced change of habit plane for the 1/2<111> PIDL and plasticity in W depend strongly on the crystallographic orientations. The driving force for changing the loop's habit plane is derived from the resolved shear stress (RSS). A new rotation mechanism is proposed, which can be used to predict the changing trend of PIDL's habit plane. The rotation angle of the habit plane for the 1/2<111> dislocation loop is proportional to the RSS of the activated slip system. In this work, we also predict a source to induce the plasticity (e.g., deformation twin and dislocation network) observed in the experiment and discuss the nucleation, propagation and interaction of these deformations with different crystallographic orientation. The current results provide significant insights into the evolution of 1/2<111> PIDL depending on the crystallographic orientation under shock loading.
科研通智能强力驱动
Strongly Powered by AbleSci AI