Data-centric analysis of on-tree fruit detection: Experiments with deep learning

人工智能 计算机科学 管道(软件) 目标检测 深度学习 树(集合论) 机器学习 相似性(几何) 注释 班级(哲学) 培训(气象学) 模式识别(心理学) 对象(语法) 计算机视觉 图像(数学) 数学 物理 气象学 程序设计语言 数学分析
作者
Xu Wang,Julie Tang,Mark Whitty
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:194: 106748-106748 被引量:15
标识
DOI:10.1016/j.compag.2022.106748
摘要

• Practitioner guidelines for the number of fruit to label for deep learning. • Predict AP score prior to training by calculating a novel similarity score. • Study of relationships between data-centric attributes and performance. • Evaluation on open-source datasets and a modern deep learning method (YOLOv5). Due to the rapid development of deep learning, object detection models have become the current tool of choice for on-tree fruit detection in precision agriculture. The pipeline of fruit detection based on deep learning generally starts from custom dataset collection, then image annotation, then training the object detection model, and finally determination of its accuracy and running the trained model for applications. To achieve better performance in fruit detection, most research has been focused on the third part of the pipeline which is improving or adjusting the state-of-art object detection models. However, the first two data-centric parts of the pipeline also require more investigation. For example, there is very limited research about how many annotations are sufficient for training and the degree of influence of image quality on the training performance for single-class fruit detection. Therefore, in this study, we thoroughly analysed seven public on-tree fruit datasets that cover apples, almonds, mangoes, and grape bunches under different image conditions. Our experiment for testing the size of the training dataset indicates that 2500 annotated objects are generally sufficient for single-class fruit training and our experiment for testing the object size shows simply that objects of a larger size have the potential to achieve better accuracy. Then a novel similarity score was proposed to allow the readers to easily estimate the expected Average Precision (AP) score without doing any training. The last two data-centric experiments then indicate that the influence of blurriness on the training accuracy is minor whereas less complex objects show the possibility of achieving better accuracy. Overall, such numerical data-centric analysis of on-tree fruit detection will enable us to better understand the influence on the training accuracy from data-centric attributes, which is of great benefit in helping practitioners prepare better quality datasets from a data-centric perspective and thus achieve higher training accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助自然乌龟采纳,获得10
刚刚
巴斯光年完成签到,获得积分20
1秒前
1秒前
鳗鱼灵寒完成签到,获得积分10
2秒前
2秒前
ting5260完成签到,获得积分10
3秒前
yao完成签到,获得积分10
3秒前
!!完成签到,获得积分10
3秒前
neeeru完成签到,获得积分10
3秒前
4秒前
4秒前
丘比特应助大大怪采纳,获得10
4秒前
yydsyk完成签到,获得积分10
4秒前
YixiaoWang发布了新的文献求助10
5秒前
小刷子完成签到,获得积分10
5秒前
Aom发布了新的文献求助20
6秒前
可宝想当富婆完成签到 ,获得积分10
6秒前
火星上的天思完成签到,获得积分10
6秒前
6秒前
LIN完成签到,获得积分10
6秒前
JamesPei应助缓慢易云采纳,获得10
7秒前
CodeCraft应助Laraine采纳,获得10
8秒前
8秒前
卉酱完成签到,获得积分10
8秒前
Kate完成签到,获得积分10
8秒前
林夏发布了新的文献求助10
8秒前
小思雅发布了新的文献求助10
8秒前
ZJCGD发布了新的文献求助10
9秒前
踹脸大妈完成签到,获得积分10
9秒前
佳仪完成签到 ,获得积分10
11秒前
11秒前
11秒前
11秒前
11秒前
Akim应助哎呀呀采纳,获得10
12秒前
sljzhangbiao11完成签到,获得积分10
13秒前
宋宋关注了科研通微信公众号
13秒前
JamesPei应助12334采纳,获得10
13秒前
13秒前
zzzzz给zzzzz的求助进行了留言
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582