亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data-centric analysis of on-tree fruit detection: Experiments with deep learning

人工智能 计算机科学 管道(软件) 目标检测 深度学习 树(集合论) 机器学习 相似性(几何) 注释 班级(哲学) 培训(气象学) 模式识别(心理学) 对象(语法) 计算机视觉 图像(数学) 数学 程序设计语言 气象学 数学分析 物理
作者
Xu Wang,Julie Tang,Mark Whitty
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:194: 106748-106748 被引量:15
标识
DOI:10.1016/j.compag.2022.106748
摘要

• Practitioner guidelines for the number of fruit to label for deep learning. • Predict AP score prior to training by calculating a novel similarity score. • Study of relationships between data-centric attributes and performance. • Evaluation on open-source datasets and a modern deep learning method (YOLOv5). Due to the rapid development of deep learning, object detection models have become the current tool of choice for on-tree fruit detection in precision agriculture. The pipeline of fruit detection based on deep learning generally starts from custom dataset collection, then image annotation, then training the object detection model, and finally determination of its accuracy and running the trained model for applications. To achieve better performance in fruit detection, most research has been focused on the third part of the pipeline which is improving or adjusting the state-of-art object detection models. However, the first two data-centric parts of the pipeline also require more investigation. For example, there is very limited research about how many annotations are sufficient for training and the degree of influence of image quality on the training performance for single-class fruit detection. Therefore, in this study, we thoroughly analysed seven public on-tree fruit datasets that cover apples, almonds, mangoes, and grape bunches under different image conditions. Our experiment for testing the size of the training dataset indicates that 2500 annotated objects are generally sufficient for single-class fruit training and our experiment for testing the object size shows simply that objects of a larger size have the potential to achieve better accuracy. Then a novel similarity score was proposed to allow the readers to easily estimate the expected Average Precision (AP) score without doing any training. The last two data-centric experiments then indicate that the influence of blurriness on the training accuracy is minor whereas less complex objects show the possibility of achieving better accuracy. Overall, such numerical data-centric analysis of on-tree fruit detection will enable us to better understand the influence on the training accuracy from data-centric attributes, which is of great benefit in helping practitioners prepare better quality datasets from a data-centric perspective and thus achieve higher training accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wangyang完成签到 ,获得积分10
7秒前
10秒前
11秒前
田様应助科研通管家采纳,获得10
14秒前
贝多芬的小贝完成签到,获得积分10
15秒前
16秒前
18秒前
19秒前
HEIKU完成签到,获得积分0
20秒前
大模型应助seven采纳,获得10
24秒前
28秒前
30秒前
32秒前
七草肃完成签到,获得积分10
35秒前
Apricity发布了新的文献求助30
36秒前
36秒前
52秒前
52秒前
charih完成签到 ,获得积分10
55秒前
duyu完成签到 ,获得积分10
1分钟前
1分钟前
水心发布了新的文献求助10
1分钟前
柠檬要加冰完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
一起去旅行完成签到,获得积分10
1分钟前
诚心桐完成签到,获得积分10
1分钟前
1分钟前
zqy发布了新的文献求助10
1分钟前
爆米花应助日行三万里采纳,获得10
1分钟前
趴菜同学完成签到,获得积分10
1分钟前
1分钟前
1分钟前
留白完成签到 ,获得积分10
1分钟前
w_tiger完成签到 ,获得积分10
1分钟前
fxtx1234发布了新的文献求助30
1分钟前
1分钟前
fxtx1234完成签到,获得积分10
1分钟前
Chris完成签到 ,获得积分0
2分钟前
高分求助中
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3344111
求助须知:如何正确求助?哪些是违规求助? 2971140
关于积分的说明 8646622
捐赠科研通 2651377
什么是DOI,文献DOI怎么找? 1451711
科研通“疑难数据库(出版商)”最低求助积分说明 672250
邀请新用户注册赠送积分活动 661788