Quantitative structure-activity relationship for the oxidation of organic contaminants by peracetic acid using GA-MLR method

过氧乙酸 数量结构-活动关系 化学 分子描述符 线性回归 污染 有机化学品 环境化学 生物系统 有机化学 立体化学 机器学习 计算机科学 生态学 生物 过氧化氢
作者
Ali Shahi,Hamed Vafaei Molamahmood,Naser Faraji,Mingce Long
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:310: 114747-114747 被引量:8
标识
DOI:10.1016/j.jenvman.2022.114747
摘要

Peracetic acid (PAA) is considered as an effective and powerful oxidant for eliminating organic contaminants in wastewater treatment. The second-order rate constant (kapp) for the reaction of PAA with organic contaminants is practically important for evaluating their removal efficiency in wastewater treatment, but only limited numbers of kapp values are available. In this study, 70 organic compounds with various structures were selected, and the kapp of PAA with each organic compound was used to develop two quantitative structure-activity relationship (QSAR) models based on three kinds of descriptors including constitutional, quantum chemical, and the PaDEL descriptors. The genetic algorithm (GA) was applied to select the molecular descriptors, then the models developed by multiple linear regression (MLR). The most important descriptors that explain the reactivity of organic compounds with PAA are the EHOMO for the model with the constitutional and quantum chemical descriptors. The maxHdsCH and minHdCH2 are two most important descriptors for the model with only PaDEL descriptors. The developed models can be used to predict kapp for a wide range of organic contaminants. The accuracy of the developed models was proved by the internal, external validation and the Y-scrambling technique. The developed QSAR models using the GA-MLR method can be used as a screening tool for predicting the elimination of organic contaminants by PAA and increasing the understanding of chemical pollutant fate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懵懂的子骞完成签到 ,获得积分10
刚刚
mammoth发布了新的文献求助40
刚刚
刚刚
英俊的铭应助Chang采纳,获得10
1秒前
1秒前
1秒前
kk子完成签到,获得积分10
2秒前
夏橪发布了新的文献求助10
2秒前
JamesPei应助lunan采纳,获得10
3秒前
传奇3应助qing采纳,获得10
3秒前
卫尔摩斯完成签到,获得积分10
4秒前
4秒前
4秒前
沉默牛排发布了新的文献求助10
4秒前
科研通AI5应助独特微笑采纳,获得10
4秒前
5秒前
5秒前
碧玉墨绿完成签到,获得积分10
5秒前
xiaoma完成签到,获得积分10
5秒前
6秒前
潇洒的擎苍完成签到,获得积分10
6秒前
刘晓纳发布了新的文献求助10
6秒前
晴子发布了新的文献求助10
6秒前
洛鸢发布了新的文献求助10
7秒前
立马毕业完成签到,获得积分10
7秒前
卫尔摩斯发布了新的文献求助10
7秒前
BINBIN完成签到 ,获得积分10
7秒前
hfgeyt完成签到,获得积分10
8秒前
sakurai应助背后的诺言采纳,获得10
8秒前
湘华发布了新的文献求助10
9秒前
Jenny应助lan采纳,获得10
9秒前
单薄的飞松完成签到 ,获得积分10
9秒前
醒醒发布了新的文献求助10
9秒前
10秒前
恨安完成签到,获得积分10
10秒前
jijahui发布了新的文献求助30
10秒前
南瓜咸杏发布了新的文献求助30
10秒前
11秒前
调研昵称发布了新的文献求助50
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762