Quantitative structure-activity relationship for the oxidation of organic contaminants by peracetic acid using GA-MLR method

过氧乙酸 数量结构-活动关系 化学 分子描述符 线性回归 污染 有机化学品 环境化学 生物系统 有机化学 立体化学 机器学习 计算机科学 生态学 生物 过氧化氢
作者
Ali Shahi,Hamed Vafaei Molamahmood,Naser Faraji,Mingce Long
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:310: 114747-114747 被引量:8
标识
DOI:10.1016/j.jenvman.2022.114747
摘要

Peracetic acid (PAA) is considered as an effective and powerful oxidant for eliminating organic contaminants in wastewater treatment. The second-order rate constant (kapp) for the reaction of PAA with organic contaminants is practically important for evaluating their removal efficiency in wastewater treatment, but only limited numbers of kapp values are available. In this study, 70 organic compounds with various structures were selected, and the kapp of PAA with each organic compound was used to develop two quantitative structure-activity relationship (QSAR) models based on three kinds of descriptors including constitutional, quantum chemical, and the PaDEL descriptors. The genetic algorithm (GA) was applied to select the molecular descriptors, then the models developed by multiple linear regression (MLR). The most important descriptors that explain the reactivity of organic compounds with PAA are the EHOMO for the model with the constitutional and quantum chemical descriptors. The maxHdsCH and minHdCH2 are two most important descriptors for the model with only PaDEL descriptors. The developed models can be used to predict kapp for a wide range of organic contaminants. The accuracy of the developed models was proved by the internal, external validation and the Y-scrambling technique. The developed QSAR models using the GA-MLR method can be used as a screening tool for predicting the elimination of organic contaminants by PAA and increasing the understanding of chemical pollutant fate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
墨羽完成签到,获得积分10
刚刚
2秒前
Cruffin发布了新的文献求助10
3秒前
haoliang发布了新的文献求助10
3秒前
6秒前
Hanoi347应助吹又生采纳,获得10
7秒前
7秒前
冷静苗条完成签到,获得积分10
7秒前
健壮的短靴完成签到,获得积分20
8秒前
cccc发布了新的文献求助30
9秒前
Ava应助Redart采纳,获得10
10秒前
小周完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
13秒前
梁慧芳发布了新的文献求助10
14秒前
美满夏寒发布了新的文献求助10
15秒前
甜甜纸飞机完成签到 ,获得积分10
16秒前
爆米花应助漂亮的雁露采纳,获得10
17秒前
Sue完成签到 ,获得积分10
21秒前
慕青应助结算采纳,获得10
23秒前
科研通AI2S应助碧蓝的往事采纳,获得10
23秒前
漂亮的雁露完成签到,获得积分10
24秒前
梁慧芳完成签到,获得积分10
25秒前
CipherSage应助苏苏采纳,获得10
26秒前
AN发布了新的文献求助30
27秒前
xhjh03给xhjh03的求助进行了留言
27秒前
xiaowen完成签到,获得积分10
27秒前
27秒前
30秒前
科研通AI6应助uiui采纳,获得10
31秒前
32秒前
QZZ完成签到,获得积分10
32秒前
结算发布了新的文献求助10
35秒前
虚拟的纸鹤完成签到 ,获得积分10
36秒前
37秒前
37秒前
碧蓝的往事完成签到,获得积分10
37秒前
38秒前
聪明煎蛋完成签到,获得积分10
38秒前
彭于晏应助吉吉国王采纳,获得10
38秒前
共享精神应助Hui_2023采纳,获得10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536972
求助须知:如何正确求助?哪些是违规求助? 4624632
关于积分的说明 14592521
捐赠科研通 4565069
什么是DOI,文献DOI怎么找? 2502139
邀请新用户注册赠送积分活动 1480875
关于科研通互助平台的介绍 1452098