Quantitative structure-activity relationship for the oxidation of organic contaminants by peracetic acid using GA-MLR method

过氧乙酸 数量结构-活动关系 化学 分子描述符 线性回归 污染 有机化学品 环境化学 生物系统 有机化学 立体化学 机器学习 计算机科学 生态学 生物 过氧化氢
作者
Ali Shahi,Hamed Vafaei Molamahmood,Naser Faraji,Mingce Long
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:310: 114747-114747 被引量:8
标识
DOI:10.1016/j.jenvman.2022.114747
摘要

Peracetic acid (PAA) is considered as an effective and powerful oxidant for eliminating organic contaminants in wastewater treatment. The second-order rate constant (kapp) for the reaction of PAA with organic contaminants is practically important for evaluating their removal efficiency in wastewater treatment, but only limited numbers of kapp values are available. In this study, 70 organic compounds with various structures were selected, and the kapp of PAA with each organic compound was used to develop two quantitative structure-activity relationship (QSAR) models based on three kinds of descriptors including constitutional, quantum chemical, and the PaDEL descriptors. The genetic algorithm (GA) was applied to select the molecular descriptors, then the models developed by multiple linear regression (MLR). The most important descriptors that explain the reactivity of organic compounds with PAA are the EHOMO for the model with the constitutional and quantum chemical descriptors. The maxHdsCH and minHdCH2 are two most important descriptors for the model with only PaDEL descriptors. The developed models can be used to predict kapp for a wide range of organic contaminants. The accuracy of the developed models was proved by the internal, external validation and the Y-scrambling technique. The developed QSAR models using the GA-MLR method can be used as a screening tool for predicting the elimination of organic contaminants by PAA and increasing the understanding of chemical pollutant fate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助amanda采纳,获得10
刚刚
小鸟芋圆露露完成签到 ,获得积分0
刚刚
自信鞯完成签到,获得积分10
3秒前
修炼成绝完成签到,获得积分10
4秒前
第五轻柔完成签到,获得积分10
4秒前
mescal完成签到,获得积分10
5秒前
研友_Z7Xdl8完成签到,获得积分0
5秒前
5秒前
5秒前
可爱丸子完成签到,获得积分10
6秒前
Rinamamiya发布了新的文献求助50
6秒前
头上有犄角bb完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
pluto应助fafafa采纳,获得10
9秒前
11秒前
12秒前
12秒前
13秒前
璟晔完成签到,获得积分10
14秒前
16秒前
16秒前
醉熏的伊完成签到,获得积分10
17秒前
南歌子完成签到 ,获得积分10
18秒前
grass发布了新的文献求助10
18秒前
酥瓜完成签到 ,获得积分10
20秒前
asdfzxcv应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
Ava应助科研通管家采纳,获得10
22秒前
asdfzxcv应助科研通管家采纳,获得10
22秒前
22秒前
asdfzxcv应助科研通管家采纳,获得10
22秒前
asdfzxcv应助科研通管家采纳,获得10
22秒前
asdfzxcv应助科研通管家采纳,获得10
23秒前
asdfzxcv应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
香蕉觅云应助科研通管家采纳,获得10
23秒前
23秒前
Ava应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838