Strategies for efficient estimation of soil organic content at the local scale based on a national spectral database

均方误差 偏最小二乘回归 采样(信号处理) 数学 统计 土壤有机质 环境科学 土壤科学 计算机科学 模式识别(心理学) 人工智能 土壤水分 计算机视觉 滤波器(信号处理)
作者
Hongyi Li,Yuheng Li,Mingyong Yang,Songchao Chen,Zhou Shi
出处
期刊:Land Degradation & Development [Wiley]
卷期号:33 (10): 1649-1661 被引量:7
标识
DOI:10.1002/ldr.4223
摘要

Abstract Soil function degradation threatens the sustainable management of soil resources and soil organic matter (SOM) is a vital and important factor. Powerful measuring tools will become very important, especially in areas where data are poor or absent. The archive: China Soil Visible and Near Infrared (vis–NIR) Spectroscopy Library (CSSL) could help providea solution for less costly and fast measuring of SOM. The aim of this article was to compare SOM prediction performance according to three strategies: i) general global partial least squares regression (PLSR) using CSSL with and without spiking samples; ii) memory‐based learning (MBL) using CSSL with and without spiking samples; and iii) general PLSR using only spiking samples to predict soil organic matter in the target area. When using spiked subsets, we also investigated the prediction performance of the extra‐weighted (several copies) subsets. A series of spiking subsets were randomly selected from the total spiking samples, which were selected by conditioned Latin hypercube sampling (cLHS) from the target sites. We calculated only the mean squared Euclidean distance (msd) between the estimates density function (pds) of the principal components (PCs) of vis–NIR spectroscopy from the validation dataset and spiking subsets and statistically inferred the optimal sampling set size to be 30. Our study showed that global PLSR using CSSL spiked with the statistically optimal local samples can achieve higher predicted performance [with a mean root mean square error (RMSE) of 5.75]. MBL spiked with five extra‐weighted optimal spiking samples achieved the best accuracy with an RMSE of 3.98, an R 2 of 0.70, a bias of 0.04, and an LCCC of 0.81. The msd is a simple and effective method to determine an adequate spiking set size using only vis–NIR data. These accurate predictions demonstrated the usefulness of statistically representative spiking and MBL for advanced large soil spectral libraries for SOM determination, which is currently lacking at large soil spectral libraries in use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eric800824完成签到,获得积分10
刚刚
清新完成签到,获得积分10
刚刚
Jason发布了新的文献求助10
刚刚
刚刚
suha完成签到,获得积分10
1秒前
uilyang发布了新的文献求助10
2秒前
4秒前
打打应助tom采纳,获得10
4秒前
SYLH应助李顺杰采纳,获得10
4秒前
思源应助zzrz采纳,获得30
4秒前
QING完成签到,获得积分10
5秒前
勿明应助bingo采纳,获得30
6秒前
6秒前
山大琦子完成签到,获得积分10
6秒前
哈哈哈完成签到,获得积分10
7秒前
7秒前
7秒前
方法发布了新的文献求助10
8秒前
自洽发布了新的文献求助10
9秒前
Lucas应助uilyang采纳,获得10
9秒前
慕青应助动人的阁采纳,获得10
9秒前
9秒前
10秒前
FancyShi发布了新的文献求助10
10秒前
留胡子的沛儿完成签到,获得积分10
11秒前
11秒前
11秒前
从容山兰完成签到,获得积分20
11秒前
11发布了新的文献求助30
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
vault777发布了新的文献求助10
13秒前
wuwuw发布了新的文献求助10
13秒前
谦让烤鸡发布了新的文献求助10
13秒前
PPL发布了新的文献求助10
13秒前
zengyiqiao发布了新的文献求助10
14秒前
cyn发布了新的文献求助10
14秒前
14秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954947
求助须知:如何正确求助?哪些是违规求助? 3501168
关于积分的说明 11102048
捐赠科研通 3231509
什么是DOI,文献DOI怎么找? 1786448
邀请新用户注册赠送积分活动 870058
科研通“疑难数据库(出版商)”最低求助积分说明 801798