Patterns and driving factors of leaf C, N, and P stoichiometry in two forest types with different stand ages in a mid-subtropical zone

常绿 杉木 亚热带 生态系统 森林生态学 营养物 生态化学计量学 林业 生物 环境科学 植物 园艺 地理 生态学 农学
作者
Yunni Chang,Quanlin Zhong,Hong Yang,Chaobin Xu,Weiping Hua,Baoyin Li
出处
期刊:Forest Ecosystems [Springer Nature]
卷期号:9: 100005-100005 被引量:25
标识
DOI:10.1016/j.fecs.2022.100005
摘要

Carbon (C), nitrogen (N), and phosphorus (P) stoichiometry is a key indicator of nutrient utilization in plants, and C/N/P ratios are related to the life histories and adaptation strategies of tree species. However, no consensus has been reached on how leaf stoichiometric characteristics are affected by forest type and stand ages. The relationships between leaf stoichiometry and geographical, meteorological, and soil factors also remain poorly understood. Leaf and soil were sampled from forest stands of different age groups (young, middle-aged, near-mature, and mature) in two forest types (Chinese fir (Cunninghamia lanceolata) forests and evergreen broadleaved forests). The relationships between leaf C, N, and P stoichiometric parameters and geographical, meteorological, and soil factors were analysed by using redundancy analysis (RDA) and stepwise linear regression analysis. Leaf C concentrations peaked in the near-mature stands with increasing age irrespective of forest type. Leaf N and P concentrations fluctuated with a rising trend in Chinese fir forests, while decreased first and increased later from young to mature phases in natural evergreen broadleaved forests. Chinese fir forests were primarily limited by N and P, while natural evergreen broadleaved forests were more susceptible to P limitation. Leaf C, N, and P stoichiometric characteristics in Chinese fir forests were mainly affected by the soil total P concentration (SP), longitude (LNG), growing season precipitation (GSP) and mean temperature in July (JUT). The leaf C concentration was mainly affected by GSP and JUT; leaf N and P concentrations were both positively correlated with LNG; and leaf P was positively correlated with SP. In evergreen broadleaved forests, however, leaf stoichiometric parameters displayed significant correlations with latitude (LAT) and mean annual precipitation (MAP). Leaf stoichiometry differed among forest stands of different age groups and forest types. Leaf C, N, and P stoichiometry was primarily explained by the combinations of SP, LNG, GSP and JUT in Chinese fir forests. LAT and MAP were the main controlling factors affecting the variations in the leaf C, N, and P status in natural evergreen broadleaved forests, which supports the temperature-plant physiological hypothesis. These findings improve the understanding of the distribution patterns and driving mechanisms of leaf stoichiometry linked with stand age and forest type.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qing发布了新的文献求助30
刚刚
隐形小鸽子完成签到,获得积分20
刚刚
刚刚
文艺的青旋完成签到 ,获得积分10
1秒前
善学以致用应助sunshine采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
大模型应助mao采纳,获得10
2秒前
sterben完成签到,获得积分10
4秒前
安雯完成签到 ,获得积分10
4秒前
xiaokezhang发布了新的文献求助10
6秒前
6秒前
义气的水蓝完成签到 ,获得积分10
7秒前
4.8关闭了4.8文献求助
8秒前
lin发布了新的文献求助10
11秒前
顾矜应助盲点采纳,获得10
11秒前
12秒前
12秒前
haoooooooooooooo应助LSH970829采纳,获得10
13秒前
搜集达人应助求知的周采纳,获得30
13秒前
13秒前
研友_ZlqeD8完成签到,获得积分10
13秒前
13秒前
13秒前
领导范儿应助juaner采纳,获得10
14秒前
14秒前
15秒前
15秒前
Orange应助聪明新梅采纳,获得10
16秒前
16秒前
Mashiro发布了新的文献求助10
16秒前
Zhang发布了新的文献求助10
16秒前
JM发布了新的文献求助10
16秒前
朱云发布了新的文献求助10
17秒前
杨佳宁发布了新的文献求助10
17秒前
十号发布了新的文献求助10
18秒前
落后的乌龟应助小太阳采纳,获得10
18秒前
18秒前
领导范儿应助shu采纳,获得10
18秒前
chemchen完成签到,获得积分10
18秒前
HZH完成签到,获得积分10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049