Identification of pathology-confirmed vulnerable atherosclerotic lesions by coronary computed tomography angiography using radiomics analysis

医学 神经组阅片室 放射科 无线电技术 接收机工作特性 介入放射学 曲线下面积 冠状动脉疾病 置信区间 内科学 神经学 精神科
作者
Xiangnan Li,Weihua Yin,Yang Sun,Han Sung Kang,Jie Luo,Kuan Chen,Zhihui Hou,Yang Gao,Xinshuang Ren,Yitong Yu,Yunqiang An,Yan Zhang,Hongyue Wang,Bin Lü
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (6): 4003-4013 被引量:17
标识
DOI:10.1007/s00330-021-08518-0
摘要

ObjectivesTo explore whether radiomics-based machine learning (ML) models could outperform conventional diagnostic methods at identifying vulnerable lesions on coronary computed tomographic angiography (CCTA).MethodsIn this retrospective study, 36 heart transplant recipients with coronary heart disease (CAD) and end-stage heart failure were included. Pathological cross-section samples of 350 plaques were collected and coregistered to patients’ preoperative CCTA images. A total of 1184 radiomic features were extracted from CCTA images. Through feature selection and stratified fivefold cross-validation, we derived eight radiomics-based ML models for lesion vulnerability prediction. An independent set of 196 plaques from another 8 CAD patients who underwent heart transplants was collected to validate radiomics-based ML models’ diagnostic accuracy against conventional CCTA feature-based diagnosis (presence of at least 2 high-risk plaque features). The performance of the prediction models was assessed by the area under the receiver operating characteristic curve (AUC) with 95% confidence intervals (CI).ResultsThe training group used to develop radiomics-based ML models contained 200/350 (57.1%) vulnerable plaques and the external validation group was composed of 67.3% (132/196) vulnerable plaques. The radiomics-based ML model based on eight radiomic features showed excellent cross-validation diagnostic accuracy (AUC: 0.900 ± 0.033). In the validation group, diagnosis based on conventional CCTA features demonstrated moderate performance (AUC: 0.656 [95% CI: 0.593 –0.718]), while the radiomics-based ML model showed higher diagnostic ability (0.782 [95% CI: 0.710 –0.846]).ConclusionsRadiomics-based ML models showed better diagnostic ability than the conventional CCTA features at assessing coronary plaque vulnerability.Key Points • CCTA has great potential in the diagnosis of vulnerable coronary artery lesions. • Radiomics model built through CCTA could discriminate coronary vulnerable lesions in good diagnostic ability. • Radiomics model could improve the ability of vulnerability diagnosis against traditional CCTA method, sensitivity especially.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Mr_X完成签到,获得积分10
1秒前
5135352发布了新的文献求助10
1秒前
Stitch应助guard采纳,获得10
1秒前
2秒前
超级火龙果完成签到,获得积分10
4秒前
4秒前
4秒前
朝阳完成签到 ,获得积分10
5秒前
5秒前
杰瑞院士发布了新的文献求助10
5秒前
6秒前
科目三应助llzuo采纳,获得10
6秒前
isonomia完成签到,获得积分10
6秒前
7秒前
moyu123完成签到,获得积分10
7秒前
linluo完成签到,获得积分10
7秒前
搬砖达人发布了新的文献求助10
8秒前
9秒前
zjcbk985发布了新的文献求助10
9秒前
小林同学发布了新的文献求助30
10秒前
远方发布了新的文献求助10
10秒前
wumandong发布了新的文献求助10
11秒前
snsut完成签到,获得积分20
12秒前
沐染完成签到,获得积分10
12秒前
卢西奥发布了新的文献求助10
14秒前
慕青应助李李采纳,获得10
14秒前
所所应助费费仙女采纳,获得10
14秒前
nmmd完成签到,获得积分10
14秒前
搬砖达人完成签到,获得积分10
15秒前
汉堡包应助Wang采纳,获得10
15秒前
17秒前
17秒前
杰瑞院士发布了新的文献求助10
18秒前
糖果屋发布了新的文献求助10
20秒前
zjcbk985完成签到,获得积分10
21秒前
李小伟发布了新的文献求助10
22秒前
24秒前
24秒前
llzuo发布了新的文献求助10
28秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140965
求助须知:如何正确求助?哪些是违规求助? 2791902
关于积分的说明 7800851
捐赠科研通 2448159
什么是DOI,文献DOI怎么找? 1302441
科研通“疑难数据库(出版商)”最低求助积分说明 626568
版权声明 601226