Identification of pathology-confirmed vulnerable atherosclerotic lesions by coronary computed tomography angiography using radiomics analysis

医学 神经组阅片室 放射科 无线电技术 接收机工作特性 介入放射学 曲线下面积 冠状动脉疾病 置信区间 内科学 神经学 精神科
作者
Xiangnan Li,Yin Wang,Yang Sun,Kang Han,Jie Luo,Kuan Chen,Zhiyong Hou,Yang Gao,Xiaoyu Ren,Yitong Yu,Yunqiang An,Yan Zhang,Hongyue Wang,Bin Lü
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (6): 4003-4013 被引量:4
标识
DOI:10.1007/s00330-021-08518-0
摘要

ObjectivesTo explore whether radiomics-based machine learning (ML) models could outperform conventional diagnostic methods at identifying vulnerable lesions on coronary computed tomographic angiography (CCTA).MethodsIn this retrospective study, 36 heart transplant recipients with coronary heart disease (CAD) and end-stage heart failure were included. Pathological cross-section samples of 350 plaques were collected and coregistered to patients’ preoperative CCTA images. A total of 1184 radiomic features were extracted from CCTA images. Through feature selection and stratified fivefold cross-validation, we derived eight radiomics-based ML models for lesion vulnerability prediction. An independent set of 196 plaques from another 8 CAD patients who underwent heart transplants was collected to validate radiomics-based ML models’ diagnostic accuracy against conventional CCTA feature-based diagnosis (presence of at least 2 high-risk plaque features). The performance of the prediction models was assessed by the area under the receiver operating characteristic curve (AUC) with 95% confidence intervals (CI).ResultsThe training group used to develop radiomics-based ML models contained 200/350 (57.1%) vulnerable plaques and the external validation group was composed of 67.3% (132/196) vulnerable plaques. The radiomics-based ML model based on eight radiomic features showed excellent cross-validation diagnostic accuracy (AUC: 0.900 ± 0.033). In the validation group, diagnosis based on conventional CCTA features demonstrated moderate performance (AUC: 0.656 [95% CI: 0.593 –0.718]), while the radiomics-based ML model showed higher diagnostic ability (0.782 [95% CI: 0.710 –0.846]).ConclusionsRadiomics-based ML models showed better diagnostic ability than the conventional CCTA features at assessing coronary plaque vulnerability.Key Points • CCTA has great potential in the diagnosis of vulnerable coronary artery lesions. • Radiomics model built through CCTA could discriminate coronary vulnerable lesions in good diagnostic ability. • Radiomics model could improve the ability of vulnerability diagnosis against traditional CCTA method, sensitivity especially.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小叶子完成签到,获得积分10
刚刚
wanna发布了新的文献求助10
刚刚
管靖易完成签到 ,获得积分10
刚刚
搬砖工完成签到,获得积分10
刚刚
1秒前
KONG完成签到,获得积分10
2秒前
萝卜猪完成签到,获得积分10
2秒前
小何完成签到,获得积分10
3秒前
宁幼萱完成签到,获得积分10
3秒前
11完成签到 ,获得积分10
4秒前
上官若男应助lym采纳,获得10
4秒前
科研的师弟完成签到,获得积分10
4秒前
烟花应助青尘枫叶采纳,获得10
4秒前
光亮白山完成签到 ,获得积分10
4秒前
brianzk1989完成签到,获得积分10
4秒前
NexusExplorer应助wanna采纳,获得10
5秒前
阳仔完成签到,获得积分10
7秒前
8秒前
8秒前
Conner完成签到 ,获得积分10
8秒前
美满朝雪完成签到,获得积分10
8秒前
9秒前
Lwxbb发布了新的文献求助10
9秒前
共享精神应助Amoxi采纳,获得30
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
zwj应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
11秒前
可期完成签到,获得积分10
11秒前
wanna完成签到,获得积分10
12秒前
浅笑发布了新的文献求助10
12秒前
ddddd完成签到 ,获得积分10
12秒前
海风发布了新的文献求助10
13秒前
13秒前
13秒前
名金学南完成签到,获得积分10
13秒前
田様应助www采纳,获得10
13秒前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068596
求助须知:如何正确求助?哪些是违规求助? 2722493
关于积分的说明 7477698
捐赠科研通 2369542
什么是DOI,文献DOI怎么找? 1256421
科研通“疑难数据库(出版商)”最低求助积分说明 609576
版权声明 596835