亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of pathology-confirmed vulnerable atherosclerotic lesions by coronary computed tomography angiography using radiomics analysis

医学 神经组阅片室 放射科 无线电技术 接收机工作特性 介入放射学 曲线下面积 冠状动脉疾病 置信区间 内科学 神经学 精神科
作者
Xiangnan Li,Weihua Yin,Yang Sun,Han Sung Kang,Jie Luo,Kuan Chen,Zhihui Hou,Yang Gao,Xinshuang Ren,Yitong Yu,Yunqiang An,Yan Zhang,Hongyue Wang,Bin Lü
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (6): 4003-4013 被引量:19
标识
DOI:10.1007/s00330-021-08518-0
摘要

ObjectivesTo explore whether radiomics-based machine learning (ML) models could outperform conventional diagnostic methods at identifying vulnerable lesions on coronary computed tomographic angiography (CCTA).MethodsIn this retrospective study, 36 heart transplant recipients with coronary heart disease (CAD) and end-stage heart failure were included. Pathological cross-section samples of 350 plaques were collected and coregistered to patients’ preoperative CCTA images. A total of 1184 radiomic features were extracted from CCTA images. Through feature selection and stratified fivefold cross-validation, we derived eight radiomics-based ML models for lesion vulnerability prediction. An independent set of 196 plaques from another 8 CAD patients who underwent heart transplants was collected to validate radiomics-based ML models’ diagnostic accuracy against conventional CCTA feature-based diagnosis (presence of at least 2 high-risk plaque features). The performance of the prediction models was assessed by the area under the receiver operating characteristic curve (AUC) with 95% confidence intervals (CI).ResultsThe training group used to develop radiomics-based ML models contained 200/350 (57.1%) vulnerable plaques and the external validation group was composed of 67.3% (132/196) vulnerable plaques. The radiomics-based ML model based on eight radiomic features showed excellent cross-validation diagnostic accuracy (AUC: 0.900 ± 0.033). In the validation group, diagnosis based on conventional CCTA features demonstrated moderate performance (AUC: 0.656 [95% CI: 0.593 –0.718]), while the radiomics-based ML model showed higher diagnostic ability (0.782 [95% CI: 0.710 –0.846]).ConclusionsRadiomics-based ML models showed better diagnostic ability than the conventional CCTA features at assessing coronary plaque vulnerability.Key Points • CCTA has great potential in the diagnosis of vulnerable coronary artery lesions. • Radiomics model built through CCTA could discriminate coronary vulnerable lesions in good diagnostic ability. • Radiomics model could improve the ability of vulnerability diagnosis against traditional CCTA method, sensitivity especially.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
35秒前
科研通AI5应助科研通管家采纳,获得10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
kyokyoro完成签到,获得积分10
2分钟前
mengliu完成签到,获得积分10
2分钟前
3分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
深情安青应助科研通管家采纳,获得10
3分钟前
3分钟前
123发布了新的文献求助10
3分钟前
杨怂怂完成签到 ,获得积分10
3分钟前
执着南琴发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
脑洞疼应助科研通管家采纳,获得10
5分钟前
彭于晏应助科研通管家采纳,获得10
5分钟前
田様应助科研通管家采纳,获得10
5分钟前
5分钟前
929关闭了929文献求助
5分钟前
5分钟前
卑微学术人完成签到 ,获得积分10
6分钟前
赘婿应助科研通管家采纳,获得10
7分钟前
李东东完成签到 ,获得积分10
8分钟前
喜悦幻灵完成签到,获得积分10
8分钟前
欧皇发布了新的文献求助10
9分钟前
朱文韬发布了新的文献求助10
10分钟前
朱文韬发布了新的文献求助10
10分钟前
nano完成签到 ,获得积分10
10分钟前
朱文韬发布了新的文献求助10
10分钟前
朱文韬发布了新的文献求助10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
11分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965713
求助须知:如何正确求助?哪些是违规求助? 3510941
关于积分的说明 11155657
捐赠科研通 3245401
什么是DOI,文献DOI怎么找? 1792876
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214