Identification of pathology-confirmed vulnerable atherosclerotic lesions by coronary computed tomography angiography using radiomics analysis

医学 神经组阅片室 放射科 无线电技术 接收机工作特性 介入放射学 曲线下面积 冠状动脉疾病 置信区间 内科学 神经学 精神科
作者
Xiangnan Li,Weihua Yin,Yang Sun,Han Sung Kang,Jie Luo,Kuan Chen,Zhihui Hou,Yang Gao,Xinshuang Ren,Yitong Yu,Yunqiang An,Yan Zhang,Hongyue Wang,Bin Lü
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (6): 4003-4013 被引量:26
标识
DOI:10.1007/s00330-021-08518-0
摘要

ObjectivesTo explore whether radiomics-based machine learning (ML) models could outperform conventional diagnostic methods at identifying vulnerable lesions on coronary computed tomographic angiography (CCTA).MethodsIn this retrospective study, 36 heart transplant recipients with coronary heart disease (CAD) and end-stage heart failure were included. Pathological cross-section samples of 350 plaques were collected and coregistered to patients’ preoperative CCTA images. A total of 1184 radiomic features were extracted from CCTA images. Through feature selection and stratified fivefold cross-validation, we derived eight radiomics-based ML models for lesion vulnerability prediction. An independent set of 196 plaques from another 8 CAD patients who underwent heart transplants was collected to validate radiomics-based ML models’ diagnostic accuracy against conventional CCTA feature-based diagnosis (presence of at least 2 high-risk plaque features). The performance of the prediction models was assessed by the area under the receiver operating characteristic curve (AUC) with 95% confidence intervals (CI).ResultsThe training group used to develop radiomics-based ML models contained 200/350 (57.1%) vulnerable plaques and the external validation group was composed of 67.3% (132/196) vulnerable plaques. The radiomics-based ML model based on eight radiomic features showed excellent cross-validation diagnostic accuracy (AUC: 0.900 ± 0.033). In the validation group, diagnosis based on conventional CCTA features demonstrated moderate performance (AUC: 0.656 [95% CI: 0.593 –0.718]), while the radiomics-based ML model showed higher diagnostic ability (0.782 [95% CI: 0.710 –0.846]).ConclusionsRadiomics-based ML models showed better diagnostic ability than the conventional CCTA features at assessing coronary plaque vulnerability.Key Points • CCTA has great potential in the diagnosis of vulnerable coronary artery lesions. • Radiomics model built through CCTA could discriminate coronary vulnerable lesions in good diagnostic ability. • Radiomics model could improve the ability of vulnerability diagnosis against traditional CCTA method, sensitivity especially.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助pure123采纳,获得10
1秒前
1秒前
1秒前
Gun完成签到,获得积分10
1秒前
郭茹冰完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
浮生若梦完成签到 ,获得积分10
3秒前
悬夜完成签到,获得积分10
3秒前
东东发布了新的文献求助10
5秒前
无聊的迎波完成签到,获得积分20
5秒前
5秒前
科目三应助伍子胥采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
早点睡觉发布了新的文献求助10
7秒前
在水一方应助烧炉工采纳,获得10
8秒前
zh发布了新的文献求助10
8秒前
Hello应助Hoyshin采纳,获得10
8秒前
粥粥发布了新的文献求助10
8秒前
8秒前
9秒前
阿若完成签到,获得积分10
9秒前
9秒前
qinghuixinyi发布了新的文献求助10
9秒前
Lyn完成签到 ,获得积分10
9秒前
碎碎念s完成签到,获得积分10
9秒前
103921wjk完成签到,获得积分10
10秒前
123发布了新的文献求助20
10秒前
Cindy165发布了新的文献求助10
11秒前
11秒前
12秒前
聪明安筠发布了新的文献求助10
13秒前
Ava应助111采纳,获得10
13秒前
14秒前
zh完成签到,获得积分10
14秒前
香蕉静芙发布了新的文献求助10
14秒前
科研通AI5应助liuhuibin采纳,获得10
15秒前
M1ku发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602543
求助须知:如何正确求助?哪些是违规求助? 4011718
关于积分的说明 12420126
捐赠科研通 3691980
什么是DOI,文献DOI怎么找? 2035389
邀请新用户注册赠送积分活动 1068540
科研通“疑难数据库(出版商)”最低求助积分说明 953098