A multi-modal fusion framework based on multi-task correlation learning for cancer prognosis prediction

计算机科学 串联(数学) 人工智能 机器学习 卷积神经网络 模式识别(心理学) 深度学习 相关性 特征提取 情态动词 任务(项目管理) 图形 多任务学习 特征学习 特征(语言学) 理论计算机科学 组合数学 哲学 语言学 数学 经济 化学 管理 高分子化学 几何学
作者
Kaiwen Tan,Weixian Huang,Xiaofeng Liu,Jinlong Hu,Shoubin Dong
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:126: 102260-102260 被引量:38
标识
DOI:10.1016/j.artmed.2022.102260
摘要

Morphological attributes from histopathological images and molecular profiles from genomic data are important information to drive diagnosis, prognosis, and therapy of cancers. By integrating these heterogeneous but complementary data, many multi-modal methods are proposed to study the complex mechanisms of cancers, and most of them achieve comparable or better results from previous single-modal methods. However, these multi-modal methods are restricted to a single task (e.g., survival analysis or grade classification), and thus neglect the correlation between different tasks. In this study, we present a multi-modal fusion framework based on multi-task correlation learning (MultiCoFusion) for survival analysis and cancer grade classification, which combines the power of multiple modalities and multiple tasks. Specifically, a pre-trained ResNet-152 and a sparse graph convolutional network (SGCN) are used to learn the representations of histopathological images and mRNA expression data respectively. Then these representations are fused by a fully connected neural network (FCNN), which is also a multi-task shared network. Finally, the results of survival analysis and cancer grade classification output simultaneously. The framework is trained by an alternate scheme. We systematically evaluate our framework using glioma datasets from The Cancer Genome Atlas (TCGA). Results demonstrate that MultiCoFusion learns better representations than traditional feature extraction methods. With the help of multi-task alternating learning, even simple multi-modal concatenation can achieve better performance than other deep learning and traditional methods. Multi-task learning can improve the performance of multiple tasks not just one of them, and it is effective in both single-modal and multi-modal data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傲娇冬瓜发布了新的文献求助10
刚刚
小白发布了新的文献求助30
刚刚
秋子发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
xjn发布了新的文献求助10
1秒前
劲秉应助kiuikiu采纳,获得10
2秒前
哎哟很烦完成签到,获得积分10
2秒前
2秒前
zho关闭了zho文献求助
2秒前
科研通AI5应助Jeffery采纳,获得10
3秒前
3秒前
顾矜应助猩心采纳,获得10
4秒前
5秒前
科研通AI5应助杨桃采纳,获得10
5秒前
蔚岚影落发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
科研通AI5应助琳琅采纳,获得10
6秒前
小云飘飘发布了新的文献求助10
7秒前
Ha7完成签到,获得积分10
7秒前
Ava应助Megan采纳,获得10
7秒前
星辰大海应助DJMZ采纳,获得10
7秒前
北城无夏发布了新的文献求助10
8秒前
8秒前
8秒前
十丶年完成签到,获得积分10
8秒前
8秒前
高数数完成签到 ,获得积分10
9秒前
10秒前
10秒前
洗剪吹完成签到,获得积分10
11秒前
1604531786发布了新的文献求助10
11秒前
路灯下的小伙完成签到,获得积分10
11秒前
执着的一兰完成签到,获得积分10
12秒前
硕小牛完成签到,获得积分10
12秒前
chen1发布了新的文献求助10
12秒前
zjw发布了新的文献求助10
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734840
求助须知:如何正确求助?哪些是违规求助? 3278768
关于积分的说明 10011520
捐赠科研通 2995441
什么是DOI,文献DOI怎么找? 1643442
邀请新用户注册赠送积分活动 781187
科研通“疑难数据库(出版商)”最低求助积分说明 749300