服务器
斯塔克伯格竞赛
计算机科学
边缘计算
纳什均衡
博弈论
移动边缘计算
分布式计算
GSM演进的增强数据速率
计算机网络
数学优化
人工智能
微观经济学
数学
经济
作者
Giorgos Mitsis,Eirini Eleni Tsiropoulou,Symeon Papavassiliou
出处
期刊:IEEE Systems Journal
[Institute of Electrical and Electronics Engineers]
日期:2022-12-01
卷期号:16 (4): 6546-6557
被引量:31
标识
DOI:10.1109/jsyst.2022.3188997
摘要
The proliferation of multiaccess edge computing (MEC) paradigm has created a challenging multiuser–multiserver–multiaccess edge computing competitive environment, which brings the problem of data offloading decision-making to the forefront of research. In this article, we address this issue while jointly studying the impact of the user behavioral characteristics and the MEC servers pricing policies on determining the optimal user data offloading strategies. Prospect theory is exploited to reflect the user satisfaction and subjectivity from the data offloading, while the MEC servers’ probability of failure owing to the potential overexploitation by the users, is modeled via the theory of tragedy of the commons. A multileader multifollower Stackelberg game is formulated among the MEC servers (leaders) and the users (followers), to determine the servers’ optimal pricing policies and the users’ optimal data offloading strategies. The users’ data offloading decision-making is formulated as a noncooperative game among them and a Nash equilibrium is determined, while the MEC servers’ optimal computing service prices are obtained either through a semiautonomous game-theoretic approach, or through a fully autonomous reinforcement learning-based approach. The performance evaluation and demonstration of the superiority of the proposed framework against other benchmarking alternatives is achieved via modeling and simulation.
科研通智能强力驱动
Strongly Powered by AbleSci AI