Neural network-based method for diagnosis and severity assessment of Graves’ orbitopathy using orbital computed tomography

接收机工作特性 计算机断层摄影术 卷积神经网络 医学 曲线下面积 诊断准确性 残差神经网络 放射科 核医学 人工智能 计算机科学 内科学 药代动力学
作者
Jaesung Lee,Wangduk Seo,Jaegyun Park,Won-Seon Lim,Ja Young Oh,Nam Ju Moon,Jeong Kyu Lee
出处
期刊:Scientific Reports [Springer Nature]
卷期号:12 (1) 被引量:16
标识
DOI:10.1038/s41598-022-16217-z
摘要

Computed tomography (CT) has been widely used to diagnose Graves' orbitopathy, and the utility is gradually increasing. To develop a neural network (NN)-based method for diagnosis and severity assessment of Graves' orbitopathy (GO) using orbital CT, a specific type of NN optimized for diagnosing GO was developed and trained using 288 orbital CT scans obtained from patients with mild and moderate-to-severe GO and normal controls. The developed NN was compared with three conventional NNs [GoogleNet Inception v1 (GoogLeNet), 50-layer Deep Residual Learning (ResNet-50), and 16-layer Very Deep Convolutional Network from Visual Geometry group (VGG-16)]. The diagnostic performance was also compared with that of three oculoplastic specialists. The developed NN had an area under receiver operating curve (AUC) of 0.979 for diagnosing patients with moderate-to-severe GO. Receiver operating curve (ROC) analysis yielded AUCs of 0.827 for GoogLeNet, 0.611 for ResNet-50, 0.540 for VGG-16, and 0.975 for the oculoplastic specialists for diagnosing moderate-to-severe GO. For the diagnosis of mild GO, the developed NN yielded an AUC of 0.895, which is better than the performances of the other NNs and oculoplastic specialists. This study may contribute to NN-based interpretation of orbital CTs for diagnosing various orbital diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WTX发布了新的文献求助10
1秒前
yadikar发布了新的文献求助10
1秒前
情怀应助小周采纳,获得10
1秒前
丘比特应助小周采纳,获得10
1秒前
Owen应助小周采纳,获得10
1秒前
科目三应助小周采纳,获得10
1秒前
Ava应助小周采纳,获得10
1秒前
Hello应助小周采纳,获得10
1秒前
赘婿应助小周采纳,获得10
1秒前
今后应助小周采纳,获得10
2秒前
香蕉觅云应助小周采纳,获得10
2秒前
Ava应助两酒窝采纳,获得10
2秒前
忐忑的代梅完成签到 ,获得积分10
5秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
英姑应助小周采纳,获得10
9秒前
慕青应助小周采纳,获得10
9秒前
优美紫槐应助小周采纳,获得10
9秒前
科目三应助小周采纳,获得10
9秒前
可爱的函函应助小周采纳,获得10
9秒前
大模型应助小周采纳,获得10
9秒前
所所应助小周采纳,获得10
9秒前
丘比特应助小周采纳,获得10
9秒前
顾矜应助小周采纳,获得10
9秒前
FashionBoy应助小周采纳,获得10
9秒前
赘婿应助静好采纳,获得10
9秒前
shaft完成签到,获得积分10
11秒前
11秒前
斯文败类应助优美紫槐采纳,获得10
12秒前
搜集达人应助潇洒的元风采纳,获得10
13秒前
mimi发布了新的文献求助10
13秒前
jike完成签到 ,获得积分10
13秒前
Lucas应助所爱皆在采纳,获得10
14秒前
科研通AI2S应助yadikar采纳,获得10
14秒前
14秒前
niuya发布了新的文献求助10
16秒前
星辰大海应助好名字采纳,获得10
17秒前
17秒前
CFYLOVEU完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605491
求助须知:如何正确求助?哪些是违规求助? 4690014
关于积分的说明 14862041
捐赠科研通 4701426
什么是DOI,文献DOI怎么找? 2542082
邀请新用户注册赠送积分活动 1507751
关于科研通互助平台的介绍 1472105