Neural network-based method for diagnosis and severity assessment of Graves’ orbitopathy using orbital computed tomography

接收机工作特性 计算机断层摄影术 卷积神经网络 医学 曲线下面积 诊断准确性 残差神经网络 放射科 核医学 人工智能 计算机科学 内科学 药代动力学
作者
Jaesung Lee,Wangduk Seo,Jaegyun Park,Won-Seon Lim,Ja Young Oh,Nam Ju Moon,Jeong Kyu Lee
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:12 (1) 被引量:16
标识
DOI:10.1038/s41598-022-16217-z
摘要

Computed tomography (CT) has been widely used to diagnose Graves' orbitopathy, and the utility is gradually increasing. To develop a neural network (NN)-based method for diagnosis and severity assessment of Graves' orbitopathy (GO) using orbital CT, a specific type of NN optimized for diagnosing GO was developed and trained using 288 orbital CT scans obtained from patients with mild and moderate-to-severe GO and normal controls. The developed NN was compared with three conventional NNs [GoogleNet Inception v1 (GoogLeNet), 50-layer Deep Residual Learning (ResNet-50), and 16-layer Very Deep Convolutional Network from Visual Geometry group (VGG-16)]. The diagnostic performance was also compared with that of three oculoplastic specialists. The developed NN had an area under receiver operating curve (AUC) of 0.979 for diagnosing patients with moderate-to-severe GO. Receiver operating curve (ROC) analysis yielded AUCs of 0.827 for GoogLeNet, 0.611 for ResNet-50, 0.540 for VGG-16, and 0.975 for the oculoplastic specialists for diagnosing moderate-to-severe GO. For the diagnosis of mild GO, the developed NN yielded an AUC of 0.895, which is better than the performances of the other NNs and oculoplastic specialists. This study may contribute to NN-based interpretation of orbital CTs for diagnosing various orbital diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
HelenZ发布了新的文献求助10
刚刚
1秒前
阿包完成签到 ,获得积分10
2秒前
Adi完成签到,获得积分10
4秒前
顾矜应助科研进化中采纳,获得10
7秒前
难过盼海完成签到,获得积分10
8秒前
CipherSage应助ZZZ采纳,获得10
9秒前
南桑完成签到 ,获得积分10
10秒前
10秒前
上官若男应助schilling采纳,获得10
12秒前
13秒前
久违发布了新的文献求助10
13秒前
xlh完成签到 ,获得积分10
20秒前
gy完成签到 ,获得积分10
21秒前
22秒前
共享精神应助科研鸟采纳,获得30
22秒前
丹丹子完成签到 ,获得积分10
23秒前
Yewpanda07完成签到,获得积分10
23秒前
25秒前
小绵羊发布了新的文献求助10
25秒前
25秒前
27秒前
27秒前
爆米花应助科研探索者采纳,获得10
27秒前
schilling发布了新的文献求助10
28秒前
积极的尔岚完成签到 ,获得积分10
30秒前
李华发布了新的文献求助10
31秒前
喵喵发布了新的文献求助10
31秒前
32秒前
33秒前
33秒前
久违完成签到,获得积分10
34秒前
35秒前
彪壮的亦瑶完成签到 ,获得积分10
35秒前
科研鸟发布了新的文献求助30
36秒前
36秒前
37秒前
科研通AI2S应助蝉鸣采纳,获得20
38秒前
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966285
求助须知:如何正确求助?哪些是违规求助? 3511697
关于积分的说明 11159270
捐赠科研通 3246284
什么是DOI,文献DOI怎么找? 1793339
邀请新用户注册赠送积分活动 874354
科研通“疑难数据库(出版商)”最低求助积分说明 804351