Neural network-based method for diagnosis and severity assessment of Graves’ orbitopathy using orbital computed tomography

接收机工作特性 计算机断层摄影术 卷积神经网络 医学 曲线下面积 诊断准确性 残差神经网络 放射科 核医学 人工智能 计算机科学 内科学 药代动力学
作者
Jaesung Lee,Wangduk Seo,Jaegyun Park,Won-Seon Lim,Ja Young Oh,Nam Ju Moon,Jeong Kyu Lee
出处
期刊:Scientific Reports [Springer Nature]
卷期号:12 (1) 被引量:16
标识
DOI:10.1038/s41598-022-16217-z
摘要

Computed tomography (CT) has been widely used to diagnose Graves' orbitopathy, and the utility is gradually increasing. To develop a neural network (NN)-based method for diagnosis and severity assessment of Graves' orbitopathy (GO) using orbital CT, a specific type of NN optimized for diagnosing GO was developed and trained using 288 orbital CT scans obtained from patients with mild and moderate-to-severe GO and normal controls. The developed NN was compared with three conventional NNs [GoogleNet Inception v1 (GoogLeNet), 50-layer Deep Residual Learning (ResNet-50), and 16-layer Very Deep Convolutional Network from Visual Geometry group (VGG-16)]. The diagnostic performance was also compared with that of three oculoplastic specialists. The developed NN had an area under receiver operating curve (AUC) of 0.979 for diagnosing patients with moderate-to-severe GO. Receiver operating curve (ROC) analysis yielded AUCs of 0.827 for GoogLeNet, 0.611 for ResNet-50, 0.540 for VGG-16, and 0.975 for the oculoplastic specialists for diagnosing moderate-to-severe GO. For the diagnosis of mild GO, the developed NN yielded an AUC of 0.895, which is better than the performances of the other NNs and oculoplastic specialists. This study may contribute to NN-based interpretation of orbital CTs for diagnosing various orbital diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
善学以致用应助榛糕李采纳,获得10
1秒前
张文慧发布了新的文献求助10
1秒前
1秒前
1秒前
冷笑完成签到,获得积分10
1秒前
cloud发布了新的文献求助10
1秒前
小陈发布了新的文献求助10
1秒前
科目三应助任大发采纳,获得10
1秒前
英俊的铭应助健忘采纳,获得10
2秒前
浮游应助YHK采纳,获得30
3秒前
乐无穷完成签到 ,获得积分10
3秒前
你好完成签到,获得积分10
3秒前
ziyou发布了新的文献求助10
4秒前
彭于晏应助jergen采纳,获得10
4秒前
Jiangmz完成签到,获得积分10
4秒前
smart发布了新的文献求助10
4秒前
bkagyin应助狂野元枫采纳,获得10
4秒前
鱼骨头发布了新的文献求助10
4秒前
英俊的涵易完成签到,获得积分10
4秒前
4秒前
无奈皮卡丘完成签到,获得积分10
4秒前
4秒前
斯文败类应助Rae采纳,获得10
5秒前
slx完成签到,获得积分10
5秒前
今后应助林梓采纳,获得10
5秒前
稞小弟发布了新的文献求助50
5秒前
5秒前
5秒前
Mrtuo完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
积极的黑猫完成签到,获得积分10
7秒前
科研通AI6应助胡咔咔采纳,获得10
7秒前
7秒前
重要难摧完成签到,获得积分10
8秒前
8秒前
佩琪完成签到,获得积分10
9秒前
等待的剑身完成签到,获得积分10
10秒前
蒋磊给蒋磊的求助进行了留言
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513281
求助须知:如何正确求助?哪些是违规求助? 4607602
关于积分的说明 14505891
捐赠科研通 4543161
什么是DOI,文献DOI怎么找? 2489360
邀请新用户注册赠送积分活动 1471343
关于科研通互助平台的介绍 1443372