机械敏感通道
刚度
细胞迁移
收缩性
牵引力
背景(考古学)
焦点粘着
牵引(地质)
离合器
生物物理学
细胞
材料科学
化学
细胞生物学
生物
物理
信号转导
结构工程
工程类
生物化学
热力学
内分泌学
复合材料
离子通道
受体
古生物学
作者
Aleksi Isomursu,Keun‐Young Park,Jay Hou,Bo Cheng,Mathilde Mathieu,Ghaidan A. Shamsan,Benjamin Fuller,Jesse Kasim,M. Mohsen Mahmoodi,Tian Jian Lu,Guy M. Genin,Feng Xu,Min Lin,Mark D. Distefano,Johanna Ivaska,David J. Odde
出处
期刊:Nature Materials
[Nature Portfolio]
日期:2022-07-06
卷期号:21 (9): 1081-1090
被引量:149
标识
DOI:10.1038/s41563-022-01294-2
摘要
How cells sense tissue stiffness to guide cell migration is a fundamental question in development, fibrosis and cancer. Although durotaxis—cell migration towards increasing substrate stiffness—is well established, it remains unknown whether individual cells can migrate towards softer environments. Here, using microfabricated stiffness gradients, we describe the directed migration of U-251MG glioma cells towards less stiff regions. This ‘negative durotaxis’ does not coincide with changes in canonical mechanosensitive signalling or actomyosin contractility. Instead, as predicted by the motor–clutch-based model, migration occurs towards areas of ‘optimal stiffness’, where cells can generate maximal traction. In agreement with this model, negative durotaxis is selectively disrupted and even reversed by the partial inhibition of actomyosin contractility. Conversely, positive durotaxis can be switched to negative by lowering the optimal stiffness by the downregulation of talin—a key clutch component. Our results identify the molecular mechanism driving context-dependent positive or negative durotaxis, determined by a cell’s contractile and adhesive machinery.
科研通智能强力驱动
Strongly Powered by AbleSci AI