A Survey of Event Relation Extraction

事件(粒子物理) 关系(数据库) 计算机科学 人工智能 关系抽取 领域(数学) 任务(项目管理) 管道(软件) 过程(计算) 机器学习 自然语言处理 数据挖掘 工程类 数学 操作系统 物理 量子力学 程序设计语言 系统工程 纯数学
作者
Qunli Xie,Junlan Pan,Tao Liu,Beibei Qian,Xianchuan Wang,Xianchao Wang
出处
期刊:Lecture notes in electrical engineering 卷期号:: 1818-1827 被引量:3
标识
DOI:10.1007/978-981-16-8052-6_269
摘要

Human beings recognize and understand the real world in units of events. In recent years, events have been used as the basic unit to process unstructured text in the field of natural language processing, but there is often a connection between events and events. Therefore, recognizing the relationship between events and events in unstructured text has become an important task in the field of natural language processing and has attracted more and more researchers’ attention. This paper first introduces the evolution of the method of event temporal relation and causal relation in the extraction research, comparing the advantages and disadvantages and method performance; Then, the event relation extraction model based on deep learning can be divided into strong supervision method and weak supervision method, and the extraction methods of event relation are analyzed, compared and summarized respectively, among them, the method of strong supervision based on deep learning can be further divided into pipeline method and joint learning method, and the method of weak supervision based on deep learning can be divided into semi-supervised learning method, remote learning supervised method and unsupervised learning method. Finally, this paper summarizes the methods of event relation extraction and points out the future research direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
四喜完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
Yenom完成签到 ,获得积分10
3秒前
4秒前
4秒前
SciGPT应助浩浩大人采纳,获得10
4秒前
迅速冰岚发布了新的文献求助10
4秒前
4秒前
WTT完成签到,获得积分20
5秒前
5秒前
苹果煎饼发布了新的文献求助10
5秒前
yan发布了新的文献求助10
5秒前
云肜发布了新的文献求助30
5秒前
Hello应助FatDanny采纳,获得10
6秒前
斯文败类应助娜行采纳,获得10
6秒前
庄小因完成签到,获得积分10
6秒前
热心市民小刘给热心市民小刘的求助进行了留言
6秒前
小钟完成签到,获得积分10
6秒前
徐慕源发布了新的文献求助10
6秒前
7秒前
深情安青应助任医生采纳,获得10
7秒前
7秒前
sherrinford完成签到,获得积分10
7秒前
科研通AI2S应助VDC采纳,获得10
8秒前
YAOYAO发布了新的文献求助10
8秒前
舒适豌豆完成签到,获得积分10
8秒前
Amber应助reck采纳,获得10
8秒前
Renhong完成签到,获得积分10
9秒前
10秒前
桐桐应助咕噜仔采纳,获得10
10秒前
季宇完成签到,获得积分10
11秒前
11秒前
科研通AI2S应助大脸妹采纳,获得10
11秒前
AA发布了新的文献求助10
12秒前
12秒前
12秒前
小二郎应助小喵采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678