Cooperative Coevolutionary CMA-ES With Landscape-Aware Grouping in Noisy Environments

计算机科学 人工智能 机器学习 进化计算
作者
Yapei Wu,Xingguang Peng,Handing Wang,Yaochu Jin,Demin Xu
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (3): 686-700 被引量:11
标识
DOI:10.1109/tevc.2022.3180224
摘要

Many real-world optimization tasks suffer from noise. So far, the research on noise-tolerant optimization algorithms is still restricted to low-dimensional problems with less than 100 decision variables. In reality, many problems are high dimensional. Cooperative coevolutionary (CC) algorithms based on a divide-and-conquer strategy are promising in solving complex high-dimensional problems. However, noisy fitness evaluations pose a challenge in problem decomposition for CC. The state-of-the-art grouping methods, such as differential grouping (DG) and recursive DG, are unable to work properly in noisy environments. Because it is impossible to distinguish whether the change of one variable's difference value is caused by noise or the perturbation of its interacting variables. As a result, every pair of variables will be identified as nonseparable in these methods. In this article, we study how to group decision variables with the covariance matrix adaptation evolution strategy (CMA-ES) in noisy environments and subsequently propose a landscape-aware grouping (LAG) method. Instead of detecting pairwise interacting variables, we directly identify a nonseparable subcomponent. To this end, we propose to use two convergence features: 1) variable convergence time and 2) accumulative path, to describe variables' fitness landscapes; then, variables are clustered according to these two features. Numerical experiments show that LAG can more effectively identify interactive decision variables in the presence of multiplicative noise than the DG and some of its variants. Up to 500 dimensions, the performance of CC CMA-ES with landscape-aware grouping (CC-CMAES-LAG) is competitive compared with existing CC algorithms and uncertainty-handling CMA-ES (UH-CMA-ES).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阳光大男孩完成签到,获得积分10
刚刚
1秒前
丘比特应助donwe采纳,获得10
1秒前
科研通AI5应助777采纳,获得10
2秒前
天天快乐应助英俊的觅波采纳,获得10
2秒前
飘逸的海云完成签到,获得积分10
2秒前
义气的海亦完成签到,获得积分10
3秒前
俭朴的孤风关注了科研通微信公众号
4秒前
4秒前
4秒前
SUNHAO发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
mahuahua完成签到,获得积分10
7秒前
7秒前
7秒前
Dank1ng发布了新的文献求助30
7秒前
情怀应助成就鸡翅采纳,获得10
8秒前
科目三应助Lws采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
StevenFong发布了新的文献求助10
9秒前
9秒前
stella完成签到,获得积分10
9秒前
朱罗娟发布了新的文献求助10
9秒前
9秒前
香蕉觅云应助chenjun7080采纳,获得10
9秒前
dll发布了新的文献求助10
10秒前
qingxinhuo完成签到 ,获得积分10
10秒前
10秒前
桐桐应助六元一斤虾采纳,获得10
11秒前
嘎嘎嘎发布了新的文献求助10
11秒前
威武的百褶裙完成签到,获得积分10
13秒前
14秒前
actor2006发布了新的文献求助10
14秒前
沉默的不言完成签到,获得积分10
14秒前
14秒前
NexusExplorer应助stella采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941676
求助须知:如何正确求助?哪些是违规求助? 4207590
关于积分的说明 13078573
捐赠科研通 3986551
什么是DOI,文献DOI怎么找? 2182617
邀请新用户注册赠送积分活动 1198256
关于科研通互助平台的介绍 1110551