Cooperative Coevolutionary CMA-ES With Landscape-Aware Grouping in Noisy Environments

计算机科学 人工智能 机器学习 进化计算
作者
Yapei Wu,Xingguang Peng,Handing Wang,Yaochu Jin,Demin Xu
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (3): 686-700 被引量:11
标识
DOI:10.1109/tevc.2022.3180224
摘要

Many real-world optimization tasks suffer from noise. So far, the research on noise-tolerant optimization algorithms is still restricted to low-dimensional problems with less than 100 decision variables. In reality, many problems are high dimensional. Cooperative coevolutionary (CC) algorithms based on a divide-and-conquer strategy are promising in solving complex high-dimensional problems. However, noisy fitness evaluations pose a challenge in problem decomposition for CC. The state-of-the-art grouping methods, such as differential grouping (DG) and recursive DG, are unable to work properly in noisy environments. Because it is impossible to distinguish whether the change of one variable's difference value is caused by noise or the perturbation of its interacting variables. As a result, every pair of variables will be identified as nonseparable in these methods. In this article, we study how to group decision variables with the covariance matrix adaptation evolution strategy (CMA-ES) in noisy environments and subsequently propose a landscape-aware grouping (LAG) method. Instead of detecting pairwise interacting variables, we directly identify a nonseparable subcomponent. To this end, we propose to use two convergence features: 1) variable convergence time and 2) accumulative path, to describe variables' fitness landscapes; then, variables are clustered according to these two features. Numerical experiments show that LAG can more effectively identify interactive decision variables in the presence of multiplicative noise than the DG and some of its variants. Up to 500 dimensions, the performance of CC CMA-ES with landscape-aware grouping (CC-CMAES-LAG) is competitive compared with existing CC algorithms and uncertainty-handling CMA-ES (UH-CMA-ES).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Re完成签到 ,获得积分10
1秒前
含糊的靖柏完成签到,获得积分10
1秒前
run发布了新的文献求助10
1秒前
ChanChantal完成签到 ,获得积分10
2秒前
2秒前
团子完成签到,获得积分10
3秒前
ddd完成签到,获得积分10
3秒前
Jay发布了新的文献求助10
3秒前
YouziBa完成签到,获得积分0
4秒前
淡定绮波发布了新的文献求助80
6秒前
6秒前
xiaoyu发布了新的文献求助10
7秒前
小二郎应助那些年采纳,获得50
8秒前
8秒前
10秒前
大个应助光亮的太阳采纳,获得10
10秒前
雨衣橘色发布了新的文献求助10
13秒前
Dado应助目m采纳,获得10
16秒前
16秒前
Jay完成签到,获得积分10
16秒前
周花花完成签到 ,获得积分10
17秒前
zzzzzzz完成签到,获得积分10
17秒前
汉堡包应助LTT采纳,获得10
20秒前
20秒前
spc68应助草中有粑粑采纳,获得10
21秒前
我是老大应助雨衣橘色采纳,获得10
21秒前
23秒前
24秒前
赘婿应助十字入口采纳,获得10
25秒前
27秒前
在水一方应助忐忑的红牛采纳,获得10
29秒前
祁问儿完成签到 ,获得积分10
29秒前
阿达完成签到,获得积分10
30秒前
30秒前
YDU发布了新的文献求助10
30秒前
LL完成签到 ,获得积分10
32秒前
sleep发布了新的文献求助10
34秒前
Keyto7应助善良的广缘采纳,获得10
34秒前
36秒前
爆米花应助ljy采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563681
求助须知:如何正确求助?哪些是违规求助? 4648553
关于积分的说明 14685532
捐赠科研通 4590511
什么是DOI,文献DOI怎么找? 2518648
邀请新用户注册赠送积分活动 1491204
关于科研通互助平台的介绍 1462478