Cooperative Coevolutionary CMA-ES With Landscape-Aware Grouping in Noisy Environments

计算机科学 人工智能 机器学习 进化计算
作者
Yapei Wu,Xingguang Peng,Handing Wang,Yaochu Jin,Demin Xu
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (3): 686-700 被引量:11
标识
DOI:10.1109/tevc.2022.3180224
摘要

Many real-world optimization tasks suffer from noise. So far, the research on noise-tolerant optimization algorithms is still restricted to low-dimensional problems with less than 100 decision variables. In reality, many problems are high dimensional. Cooperative coevolutionary (CC) algorithms based on a divide-and-conquer strategy are promising in solving complex high-dimensional problems. However, noisy fitness evaluations pose a challenge in problem decomposition for CC. The state-of-the-art grouping methods, such as differential grouping (DG) and recursive DG, are unable to work properly in noisy environments. Because it is impossible to distinguish whether the change of one variable's difference value is caused by noise or the perturbation of its interacting variables. As a result, every pair of variables will be identified as nonseparable in these methods. In this article, we study how to group decision variables with the covariance matrix adaptation evolution strategy (CMA-ES) in noisy environments and subsequently propose a landscape-aware grouping (LAG) method. Instead of detecting pairwise interacting variables, we directly identify a nonseparable subcomponent. To this end, we propose to use two convergence features: 1) variable convergence time and 2) accumulative path, to describe variables' fitness landscapes; then, variables are clustered according to these two features. Numerical experiments show that LAG can more effectively identify interactive decision variables in the presence of multiplicative noise than the DG and some of its variants. Up to 500 dimensions, the performance of CC CMA-ES with landscape-aware grouping (CC-CMAES-LAG) is competitive compared with existing CC algorithms and uncertainty-handling CMA-ES (UH-CMA-ES).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助江流有声采纳,获得10
2秒前
CipherSage应助陈庆学采纳,获得10
3秒前
Jasper应助syhjxk采纳,获得10
4秒前
7秒前
8秒前
9秒前
11秒前
14秒前
情怀应助科研通管家采纳,获得10
15秒前
中和皇极应助科研通管家采纳,获得10
15秒前
不配.应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
15秒前
娇娇发布了新的文献求助10
16秒前
陈庆学发布了新的文献求助10
16秒前
可乐完成签到 ,获得积分10
17秒前
冷静访梦完成签到,获得积分10
17秒前
19秒前
Zzz发布了新的文献求助10
19秒前
houbinghua发布了新的文献求助10
20秒前
圈圈发布了新的文献求助10
20秒前
12345完成签到,获得积分10
21秒前
沉静念真完成签到,获得积分10
23秒前
Lii开心完成签到,获得积分10
24秒前
李爱国应助娇娇采纳,获得10
25秒前
27秒前
沉静念真发布了新的文献求助10
28秒前
31秒前
33秒前
圈圈完成签到,获得积分20
35秒前
37秒前
田様应助jewelliang采纳,获得10
39秒前
40秒前
40秒前
41秒前
李爱国应助维生素采纳,获得10
43秒前
46秒前
完美的一天完成签到,获得积分10
48秒前
刘六完成签到 ,获得积分10
52秒前
53秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339525
求助须知:如何正确求助?哪些是违规求助? 2967484
关于积分的说明 8630077
捐赠科研通 2647082
什么是DOI,文献DOI怎么找? 1449453
科研通“疑难数据库(出版商)”最低求助积分说明 671418
邀请新用户注册赠送积分活动 660304