已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cooperative Coevolutionary CMA-ES With Landscape-Aware Grouping in Noisy Environments

计算机科学 人工智能 机器学习 进化计算
作者
Yapei Wu,Xingguang Peng,Handing Wang,Yaochu Jin,Demin Xu
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (3): 686-700 被引量:11
标识
DOI:10.1109/tevc.2022.3180224
摘要

Many real-world optimization tasks suffer from noise. So far, the research on noise-tolerant optimization algorithms is still restricted to low-dimensional problems with less than 100 decision variables. In reality, many problems are high dimensional. Cooperative coevolutionary (CC) algorithms based on a divide-and-conquer strategy are promising in solving complex high-dimensional problems. However, noisy fitness evaluations pose a challenge in problem decomposition for CC. The state-of-the-art grouping methods, such as differential grouping (DG) and recursive DG, are unable to work properly in noisy environments. Because it is impossible to distinguish whether the change of one variable's difference value is caused by noise or the perturbation of its interacting variables. As a result, every pair of variables will be identified as nonseparable in these methods. In this article, we study how to group decision variables with the covariance matrix adaptation evolution strategy (CMA-ES) in noisy environments and subsequently propose a landscape-aware grouping (LAG) method. Instead of detecting pairwise interacting variables, we directly identify a nonseparable subcomponent. To this end, we propose to use two convergence features: 1) variable convergence time and 2) accumulative path, to describe variables' fitness landscapes; then, variables are clustered according to these two features. Numerical experiments show that LAG can more effectively identify interactive decision variables in the presence of multiplicative noise than the DG and some of its variants. Up to 500 dimensions, the performance of CC CMA-ES with landscape-aware grouping (CC-CMAES-LAG) is competitive compared with existing CC algorithms and uncertainty-handling CMA-ES (UH-CMA-ES).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
ddddddddd完成签到,获得积分20
4秒前
小二郎应助健康的往事采纳,获得10
4秒前
幸福大白发布了新的文献求助10
6秒前
天天快乐应助跳跃的夜天采纳,获得10
6秒前
深情安青应助科研小生采纳,获得10
6秒前
十五亿完成签到,获得积分10
7秒前
鱼羊明完成签到 ,获得积分10
7秒前
fengyadong完成签到,获得积分10
8秒前
厄页石页完成签到,获得积分10
9秒前
11秒前
slx发布了新的文献求助10
11秒前
Rondab应助歪歪采纳,获得10
11秒前
Jasper应助歪歪采纳,获得10
11秒前
13秒前
13秒前
小安同学完成签到 ,获得积分10
14秒前
重要幻梅应助现代书雪采纳,获得10
16秒前
之组长了完成签到 ,获得积分10
16秒前
谦让夜香发布了新的文献求助10
17秒前
闹心发布了新的文献求助10
19秒前
20秒前
21秒前
wu关闭了wu文献求助
22秒前
23秒前
直觉应助负责怀莲采纳,获得10
23秒前
26秒前
邵玉莹发布了新的文献求助10
27秒前
犹豫靖儿发布了新的文献求助10
27秒前
劉平果完成签到 ,获得积分10
28秒前
yydragen应助kevin采纳,获得40
29秒前
32秒前
32秒前
32秒前
直觉应助负责怀莲采纳,获得10
34秒前
科研通AI2S应助负责怀莲采纳,获得10
34秒前
直觉应助负责怀莲采纳,获得10
34秒前
直觉应助负责怀莲采纳,获得10
34秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994362
求助须知:如何正确求助?哪些是违规求助? 3534806
关于积分的说明 11266549
捐赠科研通 3274665
什么是DOI,文献DOI怎么找? 1806427
邀请新用户注册赠送积分活动 883291
科研通“疑难数据库(出版商)”最低求助积分说明 809749