Sentinel-1 based Inland water dynamics Mapping System (SIMS)

地理空间分析 Python(编程语言) 形状文件 计算机科学 开源 遥感 地球观测 环境科学 数据挖掘
作者
Manu K. Soman,Indu Jayaluxmi
出处
期刊:Environmental Modelling and Software [Elsevier]
卷期号:: 105305-105305
标识
DOI:10.1016/j.envsoft.2022.105305
摘要

This work introduces Sentinel-1 based Inland water dynamics Mapping System (SIMS), an open-source web application developed to enable automated mapping of inland water dynamics using Sentinel-1 radar imagery. SIMS relies on a novel framework built using Python and Google Earth Engine. The underlying algorithm involves a simple binary thresholding technique and an outlier removal method tailored to perform efficiently across complicated flow regimes. Results can be downloaded as numerical data or as time-series of shapefiles representing the variation of inland water extents. Exported geospatial datasets aid the pre-launch study of future Surface Water and Ocean Topography (SWOT) mission which is expected to deliver hydrological measurements at unprecedented spatial resolutions. Classification metrics are evaluated at 20 validation sites across the globe using Sentinel-2 based Modified Normalized Difference Water Index (MNDWI) images as reference. Results indicated high overall accuracy ranging from 84.16% to 99.47% for lakes and 87.23%–98.96% for rivers. • A new open-source web app for mapping dynamic inland water extents is presented. • Application is programmed in Python using Sentinel-1 data from Google Earth Engine. • Backend algorithm involves a novel framework configurable for rivers and lakes. • Derived outputs can be exported as time series of surface water extent shapefiles. • Results have huge potential to improve the pre-launch study of future SWOT mission.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
247793325发布了新的文献求助20
刚刚
加油呀完成签到,获得积分10
刚刚
聪明可爱小绘理完成签到,获得积分10
刚刚
36456657应助啱啱采纳,获得10
刚刚
桐桐应助韦威风采纳,获得10
1秒前
1秒前
1秒前
zc98完成签到,获得积分10
2秒前
ygr应助Hao采纳,获得10
2秒前
NEMO发布了新的文献求助10
3秒前
李爱国应助神勇的戒指采纳,获得10
3秒前
4秒前
思源应助kekao采纳,获得10
4秒前
4秒前
tengli发布了新的文献求助10
4秒前
SHIKAMARU完成签到,获得积分10
6秒前
杨尚朋完成签到,获得积分10
6秒前
6秒前
6秒前
Akim应助esdeath采纳,获得10
7秒前
科研通AI5应助Inahurry采纳,获得10
7秒前
小赵完成签到,获得积分10
8秒前
zhui发布了新的文献求助10
8秒前
8秒前
9秒前
sakurai应助Maxw采纳,获得10
9秒前
xiangxl发布了新的文献求助10
9秒前
9秒前
10秒前
UGO发布了新的文献求助10
10秒前
lh发布了新的文献求助10
10秒前
乐乐应助个性尔槐采纳,获得10
10秒前
希望天下0贩的0应助瑶625采纳,获得10
11秒前
tengli完成签到,获得积分20
11秒前
劲秉应助坚定迎天采纳,获得20
11秒前
桐桐应助杨枝甘露樱桃采纳,获得10
12秒前
搜集达人应助zhuzhu采纳,获得20
12秒前
LiShin发布了新的文献求助10
13秒前
末岛发布了新的文献求助10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794