离散选择
估计员
非参数统计
计量经济学
经济
风险厌恶(心理学)
鉴定(生物学)
点(几何)
集合(抽象数据类型)
选择集
财产(哲学)
数理经济学
计算机科学
期望效用假设
数学
统计
植物
几何学
哲学
认识论
生物
程序设计语言
作者
Levon Barseghyan,Francesca Molinari,Matthew Thirkettle
摘要
This paper is concerned with learning decision-makers’ preferences using data on observed choices from a finite set of risky alternatives. We propose a discrete choice model with unobserved heterogeneity in consideration sets and in standard risk aversion. We obtain sufficient conditions for the model’s semi-nonparametric point identification, including in cases where consideration depends on preferences and on some of the exogenous variables. Our method yields an estimator that is easy to compute and is applicable in markets with large choice sets. We illustrate its properties using a dataset on property insurance purchases. (JEL D81, D83, D91, G22, G52)
科研通智能强力驱动
Strongly Powered by AbleSci AI