PI3K/AKT/mTOR通路
精神分裂症(面向对象编程)
小RNA
蛋白激酶B
利培酮
海马体
体内
生物
神经科学
心理学
精神科
信号转导
基因
细胞生物学
遗传学
作者
Bo Pan,Yuting Wang,Yiwen Shi,Qianzhan Yang,Bing Han,Xiaoli Zhu,Yanqing Liu
标识
DOI:10.1080/15622975.2021.2022757
摘要
Objectives: Schizophrenia is a devastating mental disease. Various microRNAs were proven to be associated with schizophrenia. Altered microRNA-144-3p (miR-144-3p) levels were found in various neurological and psychotic disorders. Beta2-subunit of Na(+)/K(+)-ATPase (ATP1B2) regulates neuronal migration and cell growth during brain development through the PI3K/Akt/mTOR pathway. The present study explored the associations of miR-144-3p and ATP1B2 with schizophrenia and their mutual interaction.Methods: A schizophrenic animal model employing repeated MK-801 administration was established and 293 T cells over-expressing miR-144-3p were constructed by lentivirus. The in vitro and in vivo levels of miR-144-3p, ATP1B2, and the PI3K/Akt/mTOR pathway were examined by qRT-PCR and Western Blots. The interaction between miR-144-3p and ATP1B2 was predicted and assessed by using bioinformatic methods and a luciferase reporter gene assay, respectively.Results: MiR-144-3p expression was elevated in the schizophrenic rat hippocampus. ATP1B2 was down-regulated in schizophrenic patients by analysing GEO datasets. Additionally, miR-144-3p can directly bind with ATP1B2. Furthermore, the ATP1B2 expression and PI3K/Akt/mTOR phosphorylation levels were down-regulated in the 293 T cells over-expressing miR-144-3p and schizophrenic rat hippocampus, which could be reversed by risperidone.Conclusions: This study revealed that up-regulated miR-144-3p might be associated with schizophrenia through down-regulating ATP1B2, implicating new targets of schizophrenia treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI