外显子组测序
桑格测序
SDHA
系谱图
遗传学
复合杂合度
张力减退
外显子组
生物
错义突变
疾病
生物信息学
医学
基因
突变
内科学
基因表达
作者
Zhi-hua Yang,Jun Cao,Yucen Song,Suyi Li,Zhihui Jiao,Shumin Ren,Xu Gao,Suqin Zhang,Jingjing Liu,Yibing Chen
摘要
Leigh syndrome (LS), the most common mitochondrial disease in early childhood, usually manifests variable neurodegenerative symptoms and typical brain magnetic resonance imaging (MRI) lesions. To date, pathogenic variants in more than 80 genes have been identified. However, there are still many cases without molecular diagnoses, and thus more disease-causing variants need to be unveiled. Here, we presented three clinically suspected LS patients manifesting neurological symptoms including developmental delay, hypotonia, and epilepsy during the first year of age, along with symmetric brain lesions on MRI. We explored disease-associated variants in patients and their nonconsanguineous parents by whole-exome sequencing and subsequent Sanger sequencing verification. Sequencing data revealed three pairs of disease-associated compound heterozygous variants: c.1A>G (p.Met1?) and 409G>C (p.Asp137His) in SDHA, c.1253G>A (p.Arg418His) and 1300C>T (p.Leu434Phe) in NARS2, and c.5C>T (p.Ala2Val) and 773T>G (p.Leu258Trp) in ECHS1. Among them, the likely pathogenic variants c.409G>C (p.Asp137His) in SDHA, c.1300C>T (p.Leu434Phe) in NARS2, and c.773T>G (p.Leu258Trp) in ECHS1 were newly identified. Segregation analysis indicated the possible disease-causing nature of the novel variants. In silico prediction and three-dimensional protein modeling further suggested the potential pathogenicity of these variants. Our discovery of novel variants expands the gene variant spectrum of LS and provides novel evidence for genetic counseling.
科研通智能强力驱动
Strongly Powered by AbleSci AI