A survey of the extraction and applications of causal relations

计算机科学 因果关系 事件(粒子物理) 因果关系(物理学) 关系抽取 自然语言 关系(数据库) 背景(考古学) 自然语言处理 数据科学 人工智能 认识论 数据挖掘 生物 物理 哲学 古生物学 量子力学
作者
Brett Drury,Hugo Gonçalo Oliveira,Alneu de Andrade Lopes
出处
期刊:Natural Language Engineering [Cambridge University Press]
卷期号:28 (3): 361-400 被引量:8
标识
DOI:10.1017/s135132492100036x
摘要

Abstract Causationin written natural language can express a strong relationship between events and facts. Causation in the written form can be referred to as a causal relation where a cause event entails the occurrence of an effect event. A cause and effect relationship is stronger than a correlation between events, and therefore aggregated causal relations extracted from large corpora can be used in numerous applications such as question-answering and summarisation to produce superior results than traditional approaches. Techniques like logical consequence allow causal relations to be used in niche practical applications such as event prediction which is useful for diverse domains such as security and finance. Until recently, the use of causal relations was a relatively unpopular technique because the causal relation extraction techniques were problematic, and the relations returned were incomplete, error prone or simplistic. The recent adoption of language models and improved relation extractors for natural language such as Transformer-XL (Dai et al . (2019). Transformer-xl: Attentive language models beyond a fixed-length context . arXiv preprint arXiv:1901.02860 ) has seen a surge of research interest in the possibilities of using causal relations in practical applications. Until now, there has not been an extensive survey of the practical applications of causal relations; therefore, this survey is intended precisely to demonstrate the potential of causal relations. It is a comprehensive survey of the work on the extraction of causal relations and their applications, while also discussing the nature of causation and its representation in text.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牧紫菱完成签到,获得积分10
2秒前
謓言完成签到,获得积分10
2秒前
yys完成签到,获得积分10
3秒前
ZX完成签到,获得积分10
3秒前
123完成签到,获得积分10
3秒前
南方周末完成签到,获得积分10
4秒前
6秒前
赵吉思汗完成签到,获得积分10
6秒前
7秒前
研友icc完成签到,获得积分0
7秒前
科研通AI2S应助pophoo采纳,获得10
8秒前
科研通AI2S应助冷酷的赛君采纳,获得10
8秒前
zzz完成签到,获得积分10
9秒前
9秒前
9秒前
Gakay完成签到,获得积分10
9秒前
10秒前
Meng完成签到,获得积分10
10秒前
和谐白云完成签到,获得积分10
10秒前
多喝水我完成签到 ,获得积分10
10秒前
昕想事成完成签到,获得积分10
10秒前
刻苦熊猫应助无聊的三毒采纳,获得10
10秒前
潇洒的如松完成签到,获得积分10
10秒前
way完成签到,获得积分10
11秒前
漂亮的丝袜完成签到,获得积分20
11秒前
华仔完成签到,获得积分10
11秒前
Xiao完成签到,获得积分10
11秒前
徐昊完成签到,获得积分10
12秒前
12秒前
12秒前
茉莉园完成签到,获得积分10
12秒前
乾乾完成签到,获得积分10
12秒前
丘比特应助铭心采纳,获得10
13秒前
PSCs发布了新的文献求助10
13秒前
哈哈一笑完成签到,获得积分10
13秒前
李健应助能干的烧鹅采纳,获得10
13秒前
燕燕完成签到 ,获得积分10
13秒前
加油完成签到,获得积分20
13秒前
13秒前
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147058
求助须知:如何正确求助?哪些是违规求助? 2798385
关于积分的说明 7828457
捐赠科研通 2454989
什么是DOI,文献DOI怎么找? 1306573
科研通“疑难数据库(出版商)”最低求助积分说明 627831
版权声明 601565