A survey of the extraction and applications of causal relations

计算机科学 因果关系 事件(粒子物理) 因果关系(物理学) 关系抽取 自然语言 关系(数据库) 背景(考古学) 自然语言处理 数据科学 人工智能 认识论 数据挖掘 生物 物理 哲学 古生物学 量子力学
作者
Brett Drury,Hugo Gonçalo Oliveira,Alneu de Andrade Lopes
出处
期刊:Natural Language Engineering [Cambridge University Press]
卷期号:28 (3): 361-400 被引量:8
标识
DOI:10.1017/s135132492100036x
摘要

Abstract Causationin written natural language can express a strong relationship between events and facts. Causation in the written form can be referred to as a causal relation where a cause event entails the occurrence of an effect event. A cause and effect relationship is stronger than a correlation between events, and therefore aggregated causal relations extracted from large corpora can be used in numerous applications such as question-answering and summarisation to produce superior results than traditional approaches. Techniques like logical consequence allow causal relations to be used in niche practical applications such as event prediction which is useful for diverse domains such as security and finance. Until recently, the use of causal relations was a relatively unpopular technique because the causal relation extraction techniques were problematic, and the relations returned were incomplete, error prone or simplistic. The recent adoption of language models and improved relation extractors for natural language such as Transformer-XL (Dai et al . (2019). Transformer-xl: Attentive language models beyond a fixed-length context . arXiv preprint arXiv:1901.02860 ) has seen a surge of research interest in the possibilities of using causal relations in practical applications. Until now, there has not been an extensive survey of the practical applications of causal relations; therefore, this survey is intended precisely to demonstrate the potential of causal relations. It is a comprehensive survey of the work on the extraction of causal relations and their applications, while also discussing the nature of causation and its representation in text.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
坦率白萱应助www采纳,获得10
2秒前
2秒前
2秒前
2秒前
wenbin发布了新的文献求助10
3秒前
孔骁发布了新的文献求助10
4秒前
4秒前
lc完成签到,获得积分20
5秒前
萝卜发布了新的文献求助10
6秒前
归尘应助zzt采纳,获得10
6秒前
我是AY完成签到,获得积分10
6秒前
yanan完成签到,获得积分10
6秒前
寻123发布了新的文献求助10
6秒前
lc发布了新的文献求助10
7秒前
虞雪儿儿发布了新的文献求助10
8秒前
liuker发布了新的文献求助30
9秒前
10秒前
123456完成签到,获得积分20
10秒前
zhl发布了新的文献求助10
10秒前
zzzzz完成签到 ,获得积分10
10秒前
11秒前
寻123完成签到,获得积分10
13秒前
打打应助赵银志采纳,获得10
13秒前
www完成签到,获得积分10
16秒前
曲奇发布了新的文献求助10
18秒前
11112233完成签到,获得积分10
18秒前
一自文又欠完成签到 ,获得积分10
18秒前
善学以致用应助lc采纳,获得10
19秒前
hhh完成签到,获得积分10
19秒前
ding应助Dr_zsc采纳,获得10
20秒前
20秒前
20秒前
含蓄的秋荷完成签到,获得积分10
21秒前
dpk发布了新的文献求助10
22秒前
23秒前
机灵静柏发布了新的文献求助10
24秒前
25秒前
xfye完成签到,获得积分20
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993605
求助须知:如何正确求助?哪些是违规求助? 3534372
关于积分的说明 11265282
捐赠科研通 3274119
什么是DOI,文献DOI怎么找? 1806307
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712