Artificial neural network prediction models for Montney shale gas production profile based on reservoir and fracture network parameters

油页岩 石油工程 页岩气 断裂(地质) 人工神经网络 致密气 生产(经济) 天然气 储层模拟 天然气田 地质学 水力压裂 土壤科学 环境科学 岩土工程 工程类 计算机科学 废物管理 机器学习 古生物学 经济 宏观经济学
作者
Viet Nguyen-Le,Hyundon Shin
出处
期刊:Energy [Elsevier]
卷期号:244: 123150-123150 被引量:26
标识
DOI:10.1016/j.energy.2022.123150
摘要

The prediction of shale gas production is necessary to evaluate the project's economical feasibility. Some studies suggested prediction models for predicting shale gas production. However, the model-based planar fracture assumption may not apply to a naturally fractured shale gas reservoir which induces a complex fracture network. This paper proposes three ANN architectures for predicting the peak production and Arps's hyperbolic decline parameters (Di and b) of a shale gas well in the Montney formation with an existing natural fracture system. A production profile can be reconstructed using the Arps' hyperbolic decline model and the predicted parameters. The ANN architectures were developed based on 370 simulation data of the reservoir, hydraulic fracture design parameters, and the fracture network properties, including fracture spacing and fracture conductivity, which remarkably affect shale gas production. The testing results, using another set of 92 simulation data, confirmed the high correlation between the input and objective functions with R2 > 0.86. Moreover, good agreement was observed between the measured and predicted cumulative gas production at one-, five-, ten-, fifteen-, and twenty-years of production with R2 > 0.94, and percentage errors were lower than 15.6%. This suggests that the shale gas production can be predicted efficiently and reliably using the Arps' hyperbolic model and the predicted parameters. The estimated production profiles can be used to continuously update the field development plans and calculate the project's NPV. Furthermore, the proposed method is applicable for predicting the production of newly produced reservoirs with limited production history.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
1秒前
TYY应助科研通管家采纳,获得10
1秒前
三厂白水发布了新的文献求助10
1秒前
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
Mic应助科研通管家采纳,获得10
1秒前
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
TYY应助科研通管家采纳,获得10
1秒前
元谷雪应助科研通管家采纳,获得10
1秒前
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
2秒前
tomorrow完成签到 ,获得积分10
2秒前
LHS应助科研通管家采纳,获得10
2秒前
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
TYY应助科研通管家采纳,获得10
2秒前
2秒前
SciGPT应助017采纳,获得10
3秒前
4秒前
eric888应助优雅的香菇采纳,获得200
4秒前
4秒前
FashionBoy应助愤怒的早点采纳,获得10
5秒前
传统的逊发布了新的文献求助10
5秒前
瑜瑜发布了新的文献求助10
5秒前
曾泳钧发布了新的文献求助10
5秒前
6秒前
bob发布了新的文献求助30
6秒前
bkagyin应助小枣采纳,获得10
6秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583739
求助须知:如何正确求助?哪些是违规求助? 4667467
关于积分的说明 14767570
捐赠科研通 4609742
什么是DOI,文献DOI怎么找? 2529456
邀请新用户注册赠送积分活动 1498523
关于科研通互助平台的介绍 1467204