Artificial neural network prediction models for Montney shale gas production profile based on reservoir and fracture network parameters

油页岩 石油工程 页岩气 断裂(地质) 人工神经网络 致密气 生产(经济) 天然气 储层模拟 天然气田 地质学 水力压裂 土壤科学 环境科学 岩土工程 工程类 计算机科学 废物管理 机器学习 古生物学 经济 宏观经济学
作者
Viet Nguyen-Le,Hyundon Shin
出处
期刊:Energy [Elsevier]
卷期号:244: 123150-123150 被引量:26
标识
DOI:10.1016/j.energy.2022.123150
摘要

The prediction of shale gas production is necessary to evaluate the project's economical feasibility. Some studies suggested prediction models for predicting shale gas production. However, the model-based planar fracture assumption may not apply to a naturally fractured shale gas reservoir which induces a complex fracture network. This paper proposes three ANN architectures for predicting the peak production and Arps's hyperbolic decline parameters (Di and b) of a shale gas well in the Montney formation with an existing natural fracture system. A production profile can be reconstructed using the Arps' hyperbolic decline model and the predicted parameters. The ANN architectures were developed based on 370 simulation data of the reservoir, hydraulic fracture design parameters, and the fracture network properties, including fracture spacing and fracture conductivity, which remarkably affect shale gas production. The testing results, using another set of 92 simulation data, confirmed the high correlation between the input and objective functions with R2 > 0.86. Moreover, good agreement was observed between the measured and predicted cumulative gas production at one-, five-, ten-, fifteen-, and twenty-years of production with R2 > 0.94, and percentage errors were lower than 15.6%. This suggests that the shale gas production can be predicted efficiently and reliably using the Arps' hyperbolic model and the predicted parameters. The estimated production profiles can be used to continuously update the field development plans and calculate the project's NPV. Furthermore, the proposed method is applicable for predicting the production of newly produced reservoirs with limited production history.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lesyeuxdexx完成签到 ,获得积分10
1秒前
2秒前
程琳完成签到,获得积分20
3秒前
4秒前
卓哥发布了新的文献求助10
4秒前
科研通AI5应助sansan采纳,获得10
5秒前
5秒前
5秒前
脑洞疼应助杰森斯坦虎采纳,获得10
5秒前
7秒前
8秒前
研友_QQC完成签到,获得积分10
8秒前
NeuroWhite完成签到,获得积分10
8秒前
8秒前
搜索v完成签到,获得积分10
9秒前
liuchuck完成签到 ,获得积分10
9秒前
9秒前
9秒前
猫独秀完成签到,获得积分10
9秒前
11秒前
buno应助yuefeng采纳,获得10
11秒前
yiming完成签到,获得积分10
11秒前
落落发布了新的文献求助10
12秒前
清秋若月完成签到 ,获得积分10
12秒前
12秒前
呵呵呵呵完成签到,获得积分10
13秒前
13秒前
远方发布了新的文献求助10
14秒前
zxc111关注了科研通微信公众号
14秒前
15秒前
nanhe698发布了新的文献求助10
15秒前
Huang完成签到,获得积分10
15秒前
碳土不凡完成签到 ,获得积分10
16秒前
16秒前
淡淡采白发布了新的文献求助10
17秒前
17秒前
18秒前
Akim应助dingdong采纳,获得10
18秒前
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808