Artificial neural network prediction models for Montney shale gas production profile based on reservoir and fracture network parameters

油页岩 石油工程 页岩气 断裂(地质) 人工神经网络 致密气 生产(经济) 天然气 储层模拟 天然气田 地质学 水力压裂 土壤科学 环境科学 岩土工程 工程类 计算机科学 废物管理 机器学习 古生物学 经济 宏观经济学
作者
Viet Nguyen-Le,Hyundon Shin
出处
期刊:Energy [Elsevier]
卷期号:244: 123150-123150 被引量:26
标识
DOI:10.1016/j.energy.2022.123150
摘要

The prediction of shale gas production is necessary to evaluate the project's economical feasibility. Some studies suggested prediction models for predicting shale gas production. However, the model-based planar fracture assumption may not apply to a naturally fractured shale gas reservoir which induces a complex fracture network. This paper proposes three ANN architectures for predicting the peak production and Arps's hyperbolic decline parameters (Di and b) of a shale gas well in the Montney formation with an existing natural fracture system. A production profile can be reconstructed using the Arps' hyperbolic decline model and the predicted parameters. The ANN architectures were developed based on 370 simulation data of the reservoir, hydraulic fracture design parameters, and the fracture network properties, including fracture spacing and fracture conductivity, which remarkably affect shale gas production. The testing results, using another set of 92 simulation data, confirmed the high correlation between the input and objective functions with R2 > 0.86. Moreover, good agreement was observed between the measured and predicted cumulative gas production at one-, five-, ten-, fifteen-, and twenty-years of production with R2 > 0.94, and percentage errors were lower than 15.6%. This suggests that the shale gas production can be predicted efficiently and reliably using the Arps' hyperbolic model and the predicted parameters. The estimated production profiles can be used to continuously update the field development plans and calculate the project's NPV. Furthermore, the proposed method is applicable for predicting the production of newly produced reservoirs with limited production history.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
隐形曼青应助robo_t_g采纳,获得10
1秒前
2秒前
情怀应助褚楷瑞采纳,获得10
2秒前
w。完成签到,获得积分10
2秒前
米酒完成签到 ,获得积分10
2秒前
zzbyxh完成签到,获得积分0
3秒前
滴滴如玉完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
5秒前
wangcc完成签到,获得积分10
5秒前
直率铁身完成签到,获得积分10
5秒前
5秒前
风趣的老太完成签到,获得积分10
6秒前
2022.20发布了新的文献求助10
6秒前
快乐妖丽完成签到,获得积分10
6秒前
竹坞听荷发布了新的文献求助10
7秒前
SciGPT应助风中的语堂采纳,获得10
7秒前
7秒前
科研CY发布了新的文献求助10
8秒前
不学而无术完成签到,获得积分20
8秒前
10秒前
10秒前
11秒前
研友_Ljb3qL发布了新的文献求助10
11秒前
毛毛发布了新的文献求助10
12秒前
古德day完成签到,获得积分10
12秒前
13秒前
良辰应助oo采纳,获得10
13秒前
英俊的铭应助虚心的依瑶采纳,获得10
13秒前
贝壳风铃完成签到,获得积分10
13秒前
欣欣发布了新的文献求助10
14秒前
15秒前
科目三应助橘络采纳,获得10
15秒前
16秒前
热心市民余先生完成签到,获得积分10
16秒前
雪景写诗完成签到,获得积分10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313068
求助须知:如何正确求助?哪些是违规求助? 2945372
关于积分的说明 8525166
捐赠科研通 2621142
什么是DOI,文献DOI怎么找? 1433411
科研通“疑难数据库(出版商)”最低求助积分说明 664954
邀请新用户注册赠送积分活动 650449