WiTraj: Robust Indoor Motion Tracking With WiFi Signals

计算机科学 稳健性(进化) 实时计算 信道状态信息 跟踪系统 频道(广播) 跟踪(教育) 偏移量(计算机科学) 无线 计算机视觉 人工智能 卡尔曼滤波器 电信 基因 生物化学 教育学 化学 程序设计语言 心理学
作者
Dan Wu,Youwei Zeng,Ruiyang Gao,Shengjie Li,Yang Li,Rahul Shah,Hong Lu,Daqing Zhang
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:22 (5): 3062-3078 被引量:28
标识
DOI:10.1109/tmc.2021.3133114
摘要

WiFi-based device-free motion tracking systems track persons without requiring them to carry any device. Existing work has explored signal parameters such as time-of-flight (ToF), angle-of-arrival (AoA), and Doppler-frequency-shift (DFS) extracted from WiFi channel state information (CSI) to locate and track people in a room. However, they are not robust due to unreliable estimation of signal parameters. ToF and AoA estimations are not accurate for current standards-compliant WiFi devices that typically have only two antennas and limited channel bandwidth. On the other hand, DFS can be extracted relatively easily on current devices but is susceptible to the high noise level and random phase offset in CSI measurement, which results in a speed-sign-ambiguity problem and renders ambiguous walking speeds. This paper proposes WiTraj, a device-free indoor motion tracking system using commodity WiFi devices. WiTraj improves tracking robustness from three aspects: 1) It significantly improves DFS estimation quality by using the ratio of the CSI from two antennas of each receiver, 2) To better track human walking, it leverages multiple receivers placed at different viewing angles to capture human walking and then intelligently combines the best views to achieve a robust trajectory reconstruction, and, 3) It differentiates walking from in-place activities, which are typically interleaved in daily life, so that non-walking activities do not cause tracking errors. Experiments show that WiTraj can significantly improve tracking accuracy in typical environments compared to existing DFS-based systems. Evaluations across 9 participants and 3 different environments show that the median tracking error $<2.5\%$ for typical room-sized trajectories.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈明健发布了新的文献求助10
刚刚
852应助熊若宇采纳,获得10
1秒前
1223完成签到,获得积分10
1秒前
LUO发布了新的文献求助10
1秒前
中医星完成签到,获得积分10
2秒前
共享精神应助无私惜灵采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助30
4秒前
4秒前
5秒前
Hello应助liyukun采纳,获得10
5秒前
2021完成签到 ,获得积分10
5秒前
传奇3应助小米采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
优美紫槐应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
优美紫槐应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
今后应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
今后应助科研通管家采纳,获得10
6秒前
优美紫槐应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
优美紫槐应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761669
求助须知:如何正确求助?哪些是违规求助? 5531072
关于积分的说明 15400289
捐赠科研通 4897942
什么是DOI,文献DOI怎么找? 2634588
邀请新用户注册赠送积分活动 1582751
关于科研通互助平台的介绍 1537985