亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Implementation of machine learning to model losses from icing of wind turbines

结冰 风力发电 涡轮机 中尺度气象学 人工神经网络 SCADA系统 风速 天气研究与预报模式 机器学习 工程类 计算机科学 气象学 人工智能 机械工程 地理 电气工程
作者
Johan Ihlis
摘要

This thesis investigates the possibility to use machine learning algorithms to predict the losses due to icing in the Stor-Rotliten wind farm that is situated in the north of Sweden and operated by Vattenfall. The inputs for the machine learning are historical mesoscale modelled variables that are derived from a Weather Research and Forecasting Model code that is tuned for icing (WRF-model). An ice model has been updated and improved so that it would achieve a better indication of icing, based on the equations from Lasse Makkonen.A more accurate model of a wind turbine considers the turbine blade as a rotating cylinder at 85% of the length of the blade and not as vertical cylinder that stands still. Besides this, the variables from the mesoscale data are used as inputs for the machine learning algorithm.The targets are energy production losses due to icing that is computed from historical SCADA data that covers the same time frame as the WRF data. To reduce the complexity and the computational time of the system a statistical variable selection algorithm, called mutual information, is used with the MILCA toolbox for Matlab. The target for the variable selection and the machine learning is the average loss of power per wind turbine per hour. This is extracted from the production data from Vattenfall. The goal with the thesis is to relate the modelled mesoscale data with the production data (SCADA).The overall result of the study is that the neural network method offers a suitable and more accurate way to predict the losses from icing on wind turbines, but there is some work still to be done to reduce the errors in the input variables.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
支雨泽完成签到,获得积分10
2秒前
2秒前
8秒前
Fluoxtine发布了新的文献求助10
9秒前
11秒前
13秒前
29秒前
jyy发布了新的文献求助10
35秒前
37秒前
yunshui发布了新的文献求助10
42秒前
云溪完成签到,获得积分10
46秒前
量子星尘发布了新的文献求助10
47秒前
研友_8WbP4Z完成签到,获得积分20
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Mufreh应助科研通管家采纳,获得30
1分钟前
Timelapse应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
湫栗发布了新的文献求助10
1分钟前
薛枏发布了新的文献求助10
1分钟前
sunryaes完成签到 ,获得积分10
1分钟前
薛枏完成签到,获得积分10
1分钟前
科研通AI6.1应助jyy采纳,获得10
1分钟前
1分钟前
Reed发布了新的文献求助10
1分钟前
1分钟前
从来都不会放弃zr完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研小黑发布了新的文献求助10
1分钟前
2分钟前
隐形曼青应助Reed采纳,获得10
2分钟前
科研小黑完成签到,获得积分10
2分钟前
neao完成签到 ,获得积分10
2分钟前
科研通AI6.1应助jyy采纳,获得10
2分钟前
xiaolei001应助Fluoxtine采纳,获得10
2分钟前
2分钟前
MchemG举报自由访烟求助涉嫌违规
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788463
求助须知:如何正确求助?哪些是违规求助? 5707949
关于积分的说明 15473556
捐赠科研通 4916510
什么是DOI,文献DOI怎么找? 2646405
邀请新用户注册赠送积分活动 1594077
关于科研通互助平台的介绍 1548491