Implementation of machine learning to model losses from icing of wind turbines

结冰 风力发电 涡轮机 中尺度气象学 人工神经网络 SCADA系统 风速 天气研究与预报模式 机器学习 工程类 计算机科学 气象学 人工智能 机械工程 地理 电气工程
作者
Johan Ihlis
摘要

This thesis investigates the possibility to use machine learning algorithms to predict the losses due to icing in the Stor-Rotliten wind farm that is situated in the north of Sweden and operated by Vattenfall. The inputs for the machine learning are historical mesoscale modelled variables that are derived from a Weather Research and Forecasting Model code that is tuned for icing (WRF-model). An ice model has been updated and improved so that it would achieve a better indication of icing, based on the equations from Lasse Makkonen.A more accurate model of a wind turbine considers the turbine blade as a rotating cylinder at 85% of the length of the blade and not as vertical cylinder that stands still. Besides this, the variables from the mesoscale data are used as inputs for the machine learning algorithm.The targets are energy production losses due to icing that is computed from historical SCADA data that covers the same time frame as the WRF data. To reduce the complexity and the computational time of the system a statistical variable selection algorithm, called mutual information, is used with the MILCA toolbox for Matlab. The target for the variable selection and the machine learning is the average loss of power per wind turbine per hour. This is extracted from the production data from Vattenfall. The goal with the thesis is to relate the modelled mesoscale data with the production data (SCADA).The overall result of the study is that the neural network method offers a suitable and more accurate way to predict the losses from icing on wind turbines, but there is some work still to be done to reduce the errors in the input variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LLL发布了新的文献求助10
刚刚
爆米花应助娜行采纳,获得10
1秒前
1秒前
虫二队长完成签到,获得积分10
1秒前
1秒前
manan发布了新的文献求助10
1秒前
铸一字错完成签到,获得积分10
1秒前
1秒前
诚c完成签到,获得积分10
1秒前
正在输入中应助niu1采纳,获得10
2秒前
2秒前
王大帅哥完成签到,获得积分10
2秒前
qianhuxinyu完成签到,获得积分10
2秒前
2秒前
烟雾发布了新的文献求助10
2秒前
3秒前
宁听白完成签到,获得积分10
3秒前
yinxx完成签到,获得积分10
3秒前
3秒前
知123完成签到,获得积分10
4秒前
小鳄鱼一只完成签到,获得积分10
4秒前
一叶舟完成签到,获得积分10
5秒前
MADKAI发布了新的文献求助10
5秒前
吉势甘完成签到,获得积分10
5秒前
Tira发布了新的文献求助10
5秒前
5秒前
酷波er应助研友_nPPERn采纳,获得10
5秒前
顾己发布了新的文献求助20
5秒前
么系么系发布了新的文献求助10
5秒前
啊大大哇关注了科研通微信公众号
6秒前
6秒前
6秒前
Jenny应助追寻夜香采纳,获得10
7秒前
7秒前
xiuxiu_27发布了新的文献求助10
7秒前
万能图书馆应助一一采纳,获得10
7秒前
sweetbearm应助Jiancui采纳,获得10
7秒前
GGG完成签到,获得积分10
8秒前
整齐的泥猴桃完成签到 ,获得积分10
8秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678