已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

计算机科学 目标检测 人工智能 计算机视觉 对象(语法) 视觉对象识别的认知神经科学 模式识别(心理学)
作者
Shaoqing Ren,Kaiming He,Ross Girshick,Jian Sun
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:39 (6): 1137-1149 被引量:50164
标识
DOI:10.1109/tpami.2016.2577031
摘要

State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features-using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3] , our detection system has a frame rate of 5 fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助爱睡觉的鱼采纳,获得10
1秒前
秋天完成签到,获得积分10
1秒前
上官老师完成签到 ,获得积分10
4秒前
孟繁荣完成签到,获得积分10
5秒前
5秒前
思源应助伊力扎提采纳,获得10
6秒前
8秒前
10秒前
11秒前
13秒前
科研通AI6应助风华笔墨采纳,获得10
14秒前
14秒前
喝可乐的萝卜兔完成签到 ,获得积分10
15秒前
hwen1998完成签到 ,获得积分10
15秒前
绿柏发布了新的文献求助10
16秒前
shinn发布了新的文献求助10
17秒前
18秒前
19秒前
yang完成签到,获得积分10
20秒前
20秒前
现代雅香发布了新的文献求助10
22秒前
正直三颜完成签到,获得积分10
22秒前
Eri_SCI完成签到 ,获得积分10
24秒前
Suraim完成签到,获得积分10
26秒前
小马甲应助绿柏采纳,获得10
26秒前
26秒前
Walker完成签到,获得积分10
27秒前
只只完成签到,获得积分10
27秒前
不想做实验完成签到,获得积分10
29秒前
30秒前
pikaqiu驳回了ding应助
32秒前
32秒前
牛牛完成签到 ,获得积分10
33秒前
阿飞发布了新的文献求助10
36秒前
36秒前
现代雅香完成签到,获得积分10
38秒前
医疗废物专用车乘客完成签到,获得积分10
38秒前
慈祥的蛋挞完成签到,获得积分10
40秒前
凉城予梦发布了新的文献求助10
41秒前
jie完成签到 ,获得积分20
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401218
求助须知:如何正确求助?哪些是违规求助? 4520174
关于积分的说明 14079013
捐赠科研通 4433258
什么是DOI,文献DOI怎么找? 2434051
邀请新用户注册赠送积分活动 1426246
关于科研通互助平台的介绍 1404805