Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

计算机科学 目标检测 人工智能 计算机视觉 对象(语法) 视觉对象识别的认知神经科学 模式识别(心理学)
作者
Shaoqing Ren,Kaiming He,Ross Girshick,Jian Sun
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:39 (6): 1137-1149 被引量:45254
标识
DOI:10.1109/tpami.2016.2577031
摘要

State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network(RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features-using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3], our detection system has a frame rate of 5 fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿亮86完成签到,获得积分10
1秒前
wyx关闭了wyx文献求助
1秒前
卢昱丹发布了新的文献求助10
1秒前
2秒前
华仔应助chenng采纳,获得10
2秒前
3秒前
3秒前
充电宝应助停云濛濛采纳,获得10
3秒前
4秒前
5秒前
5秒前
章鑫发布了新的文献求助30
5秒前
6秒前
7秒前
7秒前
酷波er应助风趣的傲之采纳,获得10
8秒前
研友_VZG7GZ应助Gengar采纳,获得10
8秒前
AUK发布了新的文献求助10
9秒前
本恩宁完成签到 ,获得积分10
9秒前
ioio发布了新的文献求助10
9秒前
22发布了新的文献求助10
9秒前
10秒前
huazi发布了新的文献求助10
11秒前
11秒前
落寞凌波完成签到,获得积分20
11秒前
13秒前
缓慢尔槐完成签到,获得积分10
14秒前
14秒前
风清扬应助22采纳,获得10
14秒前
16秒前
wyx发布了新的文献求助10
16秒前
17秒前
小二郎应助美味的薯片采纳,获得10
17秒前
huazi完成签到,获得积分10
17秒前
18秒前
斑比完成签到,获得积分10
18秒前
缥缈的寻琴应助缓慢尔槐采纳,获得10
18秒前
19秒前
安详的嵩发布了新的文献求助10
19秒前
章鑫完成签到,获得积分10
20秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998235
求助须知:如何正确求助?哪些是违规求助? 3537729
关于积分的说明 11272361
捐赠科研通 3276854
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883757
科研通“疑难数据库(出版商)”最低求助积分说明 810014