Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

计算机科学 目标检测 人工智能 计算机视觉 对象(语法) 视觉对象识别的认知神经科学 模式识别(心理学)
作者
Shaoqing Ren,Kaiming He,Ross Girshick,Jian Sun
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:39 (6): 1137-1149 被引量:50164
标识
DOI:10.1109/tpami.2016.2577031
摘要

State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features-using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3] , our detection system has a frame rate of 5 fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵巧易蓉发布了新的文献求助10
刚刚
彭于晏应助Biu忒佛采纳,获得10
1秒前
小二郎应助听话的巧荷采纳,获得10
1秒前
TulIP完成签到,获得积分10
1秒前
Profeto发布了新的文献求助10
3秒前
NexusExplorer应助顺利采纳,获得10
3秒前
林兰特完成签到 ,获得积分10
4秒前
5秒前
5秒前
6秒前
汉堡包应助sian采纳,获得10
6秒前
可爱的函函应助哈哈哈采纳,获得100
7秒前
Profeto完成签到,获得积分10
7秒前
杨旭完成签到,获得积分10
8秒前
anlikek发布了新的文献求助10
10秒前
H-kevin.完成签到 ,获得积分10
10秒前
10秒前
俏皮的邴发布了新的文献求助10
11秒前
木子木公发布了新的文献求助10
11秒前
yang完成签到 ,获得积分10
11秒前
11秒前
在水一方应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
ding应助科研通管家采纳,获得10
13秒前
FashionBoy应助九木德采纳,获得10
13秒前
今后应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421856
求助须知:如何正确求助?哪些是违规求助? 4536767
关于积分的说明 14155159
捐赠科研通 4453354
什么是DOI,文献DOI怎么找? 2442854
邀请新用户注册赠送积分活动 1434227
关于科研通互助平台的介绍 1411370