Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

计算机科学 目标检测 人工智能 计算机视觉 对象(语法) 视觉对象识别的认知神经科学 模式识别(心理学)
作者
Shaoqing Ren,Kaiming He,Ross Girshick,Jian Sun
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:39 (6): 1137-1149 被引量:50675
标识
DOI:10.1109/tpami.2016.2577031
摘要

State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features-using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3] , our detection system has a frame rate of 5 fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安逸完成签到,获得积分10
刚刚
兴胜发布了新的文献求助10
刚刚
shionn完成签到,获得积分10
1秒前
天道酬勤完成签到,获得积分10
1秒前
1秒前
受伤惋庭完成签到,获得积分10
1秒前
淡淡兔子完成签到 ,获得积分10
1秒前
阿龙完成签到,获得积分10
1秒前
1秒前
dm11发布了新的文献求助10
2秒前
2秒前
3秒前
马先森完成签到 ,获得积分10
3秒前
dopamine完成签到,获得积分20
3秒前
脑洞疼应助豆包采纳,获得10
3秒前
ajhs完成签到,获得积分20
3秒前
lengfeng发布了新的文献求助50
4秒前
何hh完成签到,获得积分10
5秒前
ceeray23应助受伤惋庭采纳,获得10
5秒前
5秒前
zhoujunyan发布了新的文献求助100
6秒前
文京帅发布了新的文献求助10
6秒前
大个应助权涛采纳,获得10
6秒前
汉堡包应助lmm采纳,获得10
6秒前
shubo完成签到,获得积分10
6秒前
7秒前
biomds完成签到,获得积分10
7秒前
丘比特应助Steven采纳,获得10
7秒前
飘逸的凉面完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
再学一分钟完成签到,获得积分10
8秒前
美丽蕨菜子应助kkkkkkkk采纳,获得10
8秒前
8秒前
大可发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
WILL发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Lectures in probability theory and mathematical statistics - 3rd Edition 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597673
求助须知:如何正确求助?哪些是违规求助? 4683190
关于积分的说明 14828741
捐赠科研通 4661266
什么是DOI,文献DOI怎么找? 2536776
邀请新用户注册赠送积分活动 1504368
关于科研通互助平台的介绍 1470215