Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

计算机科学 目标检测 人工智能 计算机视觉 对象(语法) 视觉对象识别的认知神经科学 模式识别(心理学)
作者
Shaoqing Ren,Kaiming He,Ross Girshick,Jian Sun
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:39 (6): 1137-1149 被引量:50675
标识
DOI:10.1109/tpami.2016.2577031
摘要

State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features-using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3] , our detection system has a frame rate of 5 fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
zy发布了新的文献求助10
刚刚
大魔王完成签到,获得积分10
刚刚
mimi完成签到,获得积分10
刚刚
大锤完成签到,获得积分10
1秒前
1秒前
彪壮的绿蕊应助付辛博boo采纳,获得10
1秒前
长孙半芹发布了新的文献求助10
1秒前
1秒前
xuxuux发布了新的文献求助10
1秒前
嘛吉完成签到,获得积分20
1秒前
1秒前
1秒前
2秒前
父父发布了新的文献求助10
2秒前
万能图书馆应助蝴蝶采纳,获得10
2秒前
huangcong完成签到,获得积分10
2秒前
anan发布了新的文献求助10
2秒前
Abdurrahman完成签到,获得积分10
3秒前
大锤发布了新的文献求助10
3秒前
Wu Hao完成签到,获得积分10
4秒前
迷你的灵槐完成签到,获得积分10
4秒前
4秒前
4秒前
纯粹关注了科研通微信公众号
5秒前
leo9587发布了新的文献求助10
5秒前
paixxxxx发布了新的文献求助10
5秒前
chai发布了新的文献求助10
6秒前
huifang完成签到,获得积分10
6秒前
6秒前
无极微光应助险胜采纳,获得20
7秒前
7秒前
7秒前
汉堡包应助长孙半芹采纳,获得10
7秒前
斯文败类应助激情的随阴采纳,获得10
8秒前
传奇3应助xuxuux采纳,获得10
8秒前
HOAN应助笑的得美采纳,获得30
8秒前
啊哦呃咦唔吁完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718656
求助须知:如何正确求助?哪些是违规求助? 5253667
关于积分的说明 15286658
捐赠科研通 4868722
什么是DOI,文献DOI怎么找? 2614394
邀请新用户注册赠送积分活动 1564266
关于科研通互助平台的介绍 1521785