Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

计算机科学 目标检测 人工智能 计算机视觉 对象(语法) 视觉对象识别的认知神经科学 模式识别(心理学)
作者
Shaoqing Ren,Kaiming He,Ross Girshick,Jian Sun
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:39 (6): 1137-1149 被引量:50675
标识
DOI:10.1109/tpami.2016.2577031
摘要

State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features-using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3] , our detection system has a frame rate of 5 fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
peiwenjing应助DP采纳,获得10
刚刚
思源应助yuyan_westchina采纳,获得10
3秒前
LHL发布了新的文献求助200
4秒前
anfly完成签到,获得积分10
4秒前
5秒前
传奇3应助yahosun采纳,获得10
6秒前
深情安青应助yahosun采纳,获得10
6秒前
在水一方应助yahosun采纳,获得10
6秒前
852应助yahosun采纳,获得10
6秒前
我是老大应助yahosun采纳,获得10
6秒前
8秒前
8秒前
ionize发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
张弛完成签到,获得积分10
13秒前
研友_ZeoKYL完成签到,获得积分10
13秒前
栗子发布了新的文献求助30
14秒前
14秒前
15秒前
heyya发布了新的文献求助10
15秒前
向天歌发布了新的文献求助20
16秒前
WFZ完成签到,获得积分10
17秒前
zzzzz完成签到,获得积分10
17秒前
hhh完成签到,获得积分10
19秒前
rapkat1221发布了新的文献求助10
20秒前
xiongyh10完成签到,获得积分10
21秒前
小透明发布了新的文献求助50
21秒前
24秒前
24秒前
25秒前
ionize完成签到,获得积分10
26秒前
hhh完成签到,获得积分10
27秒前
captain发布了新的文献求助10
28秒前
风起云涌完成签到,获得积分10
28秒前
2620完成签到,获得积分10
29秒前
SciGPT应助海蓝云天采纳,获得10
30秒前
量子星尘发布了新的文献求助20
30秒前
30秒前
1793480753发布了新的文献求助10
31秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586418
求助须知:如何正确求助?哪些是违规求助? 4669685
关于积分的说明 14779607
捐赠科研通 4619993
什么是DOI,文献DOI怎么找? 2530909
邀请新用户注册赠送积分活动 1499681
关于科研通互助平台的介绍 1467850