Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

计算机科学 目标检测 人工智能 计算机视觉 对象(语法) 视觉对象识别的认知神经科学 模式识别(心理学)
作者
Shaoqing Ren,Kaiming He,Ross Girshick,Jian Sun
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:39 (6): 1137-1149 被引量:50675
标识
DOI:10.1109/tpami.2016.2577031
摘要

State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features-using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3] , our detection system has a frame rate of 5 fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
王宽宽宽发布了新的文献求助10
1秒前
ko1完成签到 ,获得积分10
1秒前
西西发布了新的文献求助10
1秒前
奶油果泥完成签到,获得积分10
2秒前
Akim应助苦苦采纳,获得10
2秒前
科研通AI6应助瞿琼瑶采纳,获得10
2秒前
毛果完成签到,获得积分10
3秒前
一点发布了新的文献求助20
3秒前
keyanrubbish发布了新的文献求助10
3秒前
天晴完成签到,获得积分10
3秒前
buno应助酷波zai采纳,获得10
3秒前
4秒前
烂漫耳机完成签到,获得积分10
5秒前
木槿完成签到,获得积分10
5秒前
科研通AI6应助王志新采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
子车茗应助科研通管家采纳,获得30
6秒前
柏林寒冬应助科研通管家采纳,获得10
6秒前
6秒前
活力忆雪应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
Linos应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得30
6秒前
Akim应助单纯的爆米花采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得50
6秒前
香蕉觅云应助科研通管家采纳,获得30
6秒前
Linos应助科研通管家采纳,获得10
6秒前
受伤毛豆应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
李爱国应助阿猫采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836