Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

计算机科学 目标检测 人工智能 计算机视觉 对象(语法) 视觉对象识别的认知神经科学 模式识别(心理学)
作者
Shaoqing Ren,Kaiming He,Ross Girshick,Jian Sun
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:39 (6): 1137-1149 被引量:50675
标识
DOI:10.1109/tpami.2016.2577031
摘要

State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features-using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3] , our detection system has a frame rate of 5 fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
大模型应助壮观的可以采纳,获得30
1秒前
一张不够花完成签到,获得积分10
1秒前
洲际导弹超有爱完成签到,获得积分10
1秒前
zy完成签到 ,获得积分10
2秒前
2秒前
hhh完成签到 ,获得积分10
2秒前
SallyLulu完成签到,获得积分10
2秒前
猫拖发布了新的文献求助10
2秒前
王琴完成签到,获得积分20
3秒前
3秒前
3秒前
xing完成签到,获得积分20
3秒前
wanci应助新鲜的护发素采纳,获得10
4秒前
12发布了新的文献求助10
4秒前
yi111发布了新的文献求助10
4秒前
乐乐应助舒适的易烟采纳,获得10
5秒前
方源应助眉间一把刀采纳,获得10
5秒前
英吉利25发布了新的文献求助30
5秒前
探寻完成签到,获得积分10
6秒前
ding应助Isabel采纳,获得10
6秒前
sleepy发布了新的文献求助10
6秒前
112发布了新的文献求助10
6秒前
6秒前
miko完成签到 ,获得积分10
6秒前
美丽的芒果完成签到,获得积分10
7秒前
7秒前
佩奇发布了新的文献求助10
7秒前
贪玩自中发布了新的文献求助10
7秒前
8秒前
大方的乌冬面完成签到,获得积分10
9秒前
ZZC10发布了新的文献求助10
9秒前
Zzz发布了新的文献求助10
9秒前
Yun完成签到 ,获得积分10
9秒前
岁岁发布了新的文献求助10
9秒前
9秒前
顾矜应助street采纳,获得10
10秒前
善学以致用应助探寻采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506003
求助须知:如何正确求助?哪些是违规求助? 4601533
关于积分的说明 14477031
捐赠科研通 4535471
什么是DOI,文献DOI怎么找? 2485413
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440873