Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

计算机科学 目标检测 人工智能 计算机视觉 对象(语法) 视觉对象识别的认知神经科学 模式识别(心理学)
作者
Shaoqing Ren,Kaiming He,Ross Girshick,Jian Sun
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:39 (6): 1137-1149 被引量:50675
标识
DOI:10.1109/tpami.2016.2577031
摘要

State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features-using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3] , our detection system has a frame rate of 5 fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助科研通管家采纳,获得10
刚刚
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
刚刚
东邪西毒加任我行完成签到,获得积分10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
无极微光应助科研通管家采纳,获得20
刚刚
英俊的铭应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
Stella应助科研通管家采纳,获得30
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
1秒前
wanci应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
科研Yu发布了新的文献求助10
1秒前
mylove应助科研通管家采纳,获得10
1秒前
Stella应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
完美世界应助孤独的蚂蚁采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
丘比特应助风中夏菡采纳,获得10
2秒前
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
所所应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
3秒前
浮游应助淡定的友容采纳,获得10
3秒前
3秒前
凡而不庸完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
Lucas应助F光采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618939
求助须知:如何正确求助?哪些是违规求助? 4703867
关于积分的说明 14924179
捐赠科研通 4758786
什么是DOI,文献DOI怎么找? 2550320
邀请新用户注册赠送积分活动 1513124
关于科研通互助平台的介绍 1474401