元动力学
顺铂
水解
化学
计算化学
组合化学
纳米技术
材料科学
有机化学
分子动力学
医学
外科
化疗
作者
Justin Kai‐Chi Lau,Bernd Ensing
摘要
Cisplatin, or cis-[Pt(NH3)2Cl2], was the first member of a new revolutionary class of anticancer drugs that is still used today for the treatment of a wide variety of cancers. The mode of action of cisplatin starts inside the cell with the hydrolysis of Pt–Cl bonds to form a Pt–aqua complex. The solvent environment plays an essential role in many biochemical processes in general, and is expected to have a particular strong effect on the activation (hydrolysis) of cisplatin and cisplatin derivatives. To investigate these solvent effects, we have studied the explicit solvent structures during cisplatin hydrolysis by means of Car–Parrinello molecular dynamics simulations. Since hydrolysis is an activated process, and thus a rare event on the simulation timescale, we have applied the metadynamics sampling technique to map out the free energy landscape from which the reaction mechanism and activation free energy are obtained. Our simulations show that hydrogen bonding between solvent water molecules and metal complexes in the hydrolyzed product systems is stronger than that in the reactant cisplatin system. In addition, the free energy profiles from our metadynamics simulations for the cisplatin hydrolysis shows that the second hydrolysis of cisplatin is thermodynamically favourable, which is in good agreement with experimental results and previous static density functional theory calculations. The reactant channels for both hydrolysis steps are rather wide and flat, indicative of a continuous spectrum of allowed mechanisms with no strong preference for either concerted dissociative or concerted associative pathways. Three or five coordinated metastable intermediates do not exist in aqueous solution.
科研通智能强力驱动
Strongly Powered by AbleSci AI