高磷酸化
大脑皮层
海马体
激酶
神经科学
化学
生物
细胞生物学
作者
Masatake Fujimura,Fusako Usuki,Masumi Sawada,Akihiko Takashima
出处
期刊:Neurotoxicology
[Elsevier]
日期:2009-11-01
卷期号:30 (6): 1000-1007
被引量:98
标识
DOI:10.1016/j.neuro.2009.08.001
摘要
Methylmercury (MeHg) is a well-known neurotoxicant inducing neuronal degeneration in the central nervous system. This in vivo study investigated the involvement of tau hyperphosphorylation in MeHg-induced neuropathological changes in the mouse brain, because abnormal tau hyperphosphorylation causes significant pathological changes associated with some neurodegenerative diseases. Mice that were administrated to 30 ppm MeHg in drinking water for 8 weeks exhibited neuropathological changes, e.g. a decrease in the number of neuron; an increase in the number of migratory astrocytes and microglia/macrophages; necrosis and apoptosis in the cerebral cortex, particularly the deep layer of primary motor cortex and prelimbic cortex. Western blotting revealed that MeHg exposure increased tau phosphorylation at Thr-205, Ser-396 and Ser-422 in the cerebral cortex, consistent with the phosphorylation patterns noted in Alzheimer's disease and frontotemporal dementia. Immunohistochemical analyses revealed that the distribution of tau-phosphorylated (Thr-205) neurons corresponded with the areas showing considerable neuropathological changes. Among the kinases and phosphatases related to tau hyperphosphorylation, the activation of mitogen-activated protein kinase kinase 4 (MKK4) and c-Jun N-terminal kinase (JNK) was recognized. Neither neuropathological changes nor tau hyperphosphorylation was detected in the hippocampus in this study although the mercury concentration here was twice that in the cerebral cortex. These findings suggest that MeHg exposure induces tau hyperphosphorylation at specific sites of tau mainly through the activation of JNK pathways, leading to neuropathological changes in the cerebral cortex selectively, but not in the hippocampus of mouse brain.
科研通智能强力驱动
Strongly Powered by AbleSci AI