A two-stage prediction model based on behavior mining in livestream e-commerce

采购 计算机科学 步伐 卷积神经网络 深度学习 光学(聚焦) 在线广告 人工智能 机器学习 营销 万维网 业务 互联网 光学 物理 地理 大地测量学
作者
Qinping Lin,Ning Jia,Liao Chen,Shiquan Zhong,Yuance Yang,Tong Gao
出处
期刊:Decision Support Systems [Elsevier BV]
卷期号:174: 114013-114013 被引量:14
标识
DOI:10.1016/j.dss.2023.114013
摘要

Livestream e-commerce has been developing at a tremendous pace in recent years. On livestream platforms, such as Douyin, a retailer attracts viewers into the live room through short video advertising, and then streamers promote and sell products in real time. In such a scenario, an accurate prediction of traffic and sales plays an essential role in operation management, including live content strategy and inventory control. However, complex behaviors (follow, share, comment, etc.) of users and long conversion paths (from seeing the advertisement to entering the live room, and to purchasing the goods) lead to poor performance of traditional prediction methods. Additionally, few studies focus on advertising information in evaluating live room performance. Therefore, we propose a two-stage learning model for traffic and sales prediction based on behavior mining, which combines marketing models and deep learning methods. In the first stage, we integrate user behaviors before getting into the live room with short video advertising data for traffic prediction. In the second stage, based on the traditional marketing model, AIDA (Attention-Interest-Desire-Action), we design a funnel convolutional neural network (FCNN) to learn sophisticated behaviors in the live room in both time and behavior orientations, and take the predicted traffic volume as the auxiliary information for sales prediction. Extensive experiments on real-world datasets from Douyin illustrate the efficacy of our proposed method, which shows the value of fusing marketing models with deep learning techniques. Furthermore, the in-depth analysis provides practical insights into user behaviors for livestream e-commerce.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kilig完成签到,获得积分10
1秒前
WU完成签到,获得积分10
1秒前
李健应助Blueberry采纳,获得10
2秒前
JMCA发布了新的文献求助10
3秒前
自然麦片完成签到,获得积分20
5秒前
5秒前
WU发布了新的文献求助10
5秒前
缓慢海亦发布了新的文献求助10
5秒前
深情安青应助GX2023采纳,获得10
7秒前
星辰大海应助xnnnn采纳,获得10
8秒前
明年完成签到,获得积分10
9秒前
1231发布了新的文献求助10
10秒前
郑鹏飞发布了新的文献求助10
10秒前
gsj完成签到 ,获得积分10
10秒前
JamesPei应助小谢采纳,获得10
11秒前
南吕完成签到,获得积分10
11秒前
12秒前
隐形曼青应助Coco采纳,获得10
13秒前
mtw完成签到,获得积分10
13秒前
自由慕青应助JMCA采纳,获得10
13秒前
ʚᵗᑋᵃᐢᵏ ᵞᵒᵘɞ完成签到,获得积分10
14秒前
YJL完成签到 ,获得积分10
14秒前
money完成签到 ,获得积分10
14秒前
14秒前
MXene应助WU采纳,获得20
16秒前
chenshiyi185完成签到,获得积分10
16秒前
16秒前
balelalala完成签到,获得积分10
17秒前
元谷雪发布了新的文献求助10
18秒前
pangxy发布了新的文献求助10
18秒前
科研通AI5应助郑鹏飞采纳,获得10
18秒前
科目三应助shimly0101xx采纳,获得10
19秒前
慕青应助任性依玉采纳,获得10
20秒前
闪闪的向梦完成签到,获得积分10
23秒前
24秒前
zhangyuze完成签到,获得积分10
24秒前
所所应助yunfengwang采纳,获得10
24秒前
25秒前
我是老大应助讨厌的昵称采纳,获得10
26秒前
Aurora完成签到 ,获得积分10
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748682
求助须知:如何正确求助?哪些是违规求助? 3291768
关于积分的说明 10074325
捐赠科研通 3007520
什么是DOI,文献DOI怎么找? 1651627
邀请新用户注册赠送积分活动 786613
科研通“疑难数据库(出版商)”最低求助积分说明 751770