Self-adaptive physics-driven deep learning for seismic wave modeling in complex topography

计算机科学 反演(地质) 地震记录 人工神经网络 区域分解方法 波传播 地震波 复杂几何 自适应网格优化 边界元法 算法 地球物理学 有限元法 计算科学 地质学 地震学 几何学 光学 人工智能 物理 热力学 构造学 数学
作者
Yi S. Ding,Su Chen,Xiaojun Li,Suyang Wang,Shuang Luan,Hao Sun
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106425-106425 被引量:17
标识
DOI:10.1016/j.engappai.2023.106425
摘要

Solving for the scattered wavefield is a key scientific problem in the field of seismology and earthquake engineering. Physics-informed neural networks (PINNs) developed in recent years have great potential in possibly increasing the flexibility and efficacy of seismic modeling and inversion. Inspired by self-adaptive physics-informed neural networks (SA-PINNs), we introduce a framework for modeling seismic waves in complex topography The relevant theoretical model construction was performed using the one-dimensional (1D) wave equation as an example. Using SA-PINNs and combining them with sparse initial wavefield data formed by the spectral element method (SEM), we carry out a numerical simulation of two-dimensional (2D) SH wave propagation to realize typical cases such as infinite/semi-infinite domain and arc-shaped canyon/hill topography. For complex scattered wavefields, a sequential learning method with time-domain decomposition was introduced in SA-PINNs to improve the scalability and solution accuracy of the network. The accuracy and reliability of the proposed method to simulate wave propagation in complex topography were verified by comparing the displacement seismograms calculated by the SA-PINNs method with those calculated by the SEM. The results show that the SA-PINNs have the advantage of gridless and fine-grained simulation and can realize numerical simulation conditions, such as free surface and side-boundary wavefield transmission.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
摘星数羊发布了新的文献求助10
1秒前
充电宝应助研友_ZGDEG8采纳,获得10
2秒前
西柚发布了新的文献求助10
2秒前
木子发布了新的文献求助10
3秒前
3秒前
大方的绮琴完成签到,获得积分10
4秒前
奕泽完成签到 ,获得积分10
4秒前
洛洛发布了新的文献求助30
4秒前
着急的含双完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
AAAA发布了新的文献求助10
7秒前
9秒前
黑炭发布了新的文献求助10
9秒前
9秒前
西柚完成签到,获得积分10
10秒前
善学以致用应助00采纳,获得10
10秒前
南风应助Brave采纳,获得10
10秒前
英姑应助木子采纳,获得10
11秒前
肚皮完成签到 ,获得积分10
11秒前
astr完成签到,获得积分10
11秒前
典雅碧空发布了新的文献求助10
12秒前
12秒前
奥利安费发布了新的文献求助10
13秒前
镜哥发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
15秒前
astr发布了新的文献求助10
15秒前
16秒前
Dceer应助典雅碧空采纳,获得10
18秒前
19秒前
来了来了发布了新的文献求助10
20秒前
20秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
彳亍1117应助科研通管家采纳,获得10
22秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
Toward personalized care for insomnia in the US Army: a machine learning model to predict response to cognitive behavioral therapy for insomnia 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3392136
求助须知:如何正确求助?哪些是违规求助? 3002953
关于积分的说明 8806661
捐赠科研通 2689710
什么是DOI,文献DOI怎么找? 1473217
科研通“疑难数据库(出版商)”最低求助积分说明 681447
邀请新用户注册赠送积分活动 674301