吸附
化学
水溶液
金属有机骨架
铕
羧酸盐
无机化学
镧系元素
离子交换
铀酰
水溶液中的金属离子
偏苯三甲酸
金属
三羧酸
离子
有机化学
分子
酶
柠檬酸循环
作者
Roxana Paz,Herlys Viltres,Nishesh Kumar Gupta,Carolina Leyva,Rushikesh P. Dhavale,Hyung Ho Park,Adolfo Romero-Galarza,Amin Reza Rajabzadeh,Seshasai Srinivasan
标识
DOI:10.1016/j.jece.2023.110084
摘要
This work reports on the effective sequestration of Eu(III) ions from aqueous solutions using three types of metal-organic frameworks (MOFs) constructed from benzene-1,3,5-tricarboxylic acid (H3BTC) linker and Ca2+, Cu2+, or Al3+ metal nodes. The MOFs possessed an exceptionally high Eu adsorption capacity of 635 (91% removal), 642 (92% removal), and 628 mg g−1 (90% removal) for Cu-BTC, Ca-BTC, and Al-BTC, respectively, at pH 7 for an initial Eu concentration of 350 mg L−1. The MOFs were hydrolytically stable and possessed a high Eu adsorption capacity in a wide pH range of 4–8. While the pseudo-second-order model explained the adsorption kinetics, the adsorption process followed the Langmuir-Freundlich isotherms. The analysis confirmed that the Eu adsorption process was governed by chemical interactions between the carboxylic acid/carboxylate group and Eu(III) ions via complexation or ion exchange mechanism. A multi-metal adsorption study confirmed a preferential adsorption behaviour for trivalent lanthanides over divalent cations due to comparatively stronger interactions between Ln3+ ions and carboxylate groups. The XPS findings suggested Eu−OOC and Eu(OH)3 formed over the MOFs' surface after Eu adsorption. These MOFs were effectively regenerated for multiple cycles using 0.1 mol L−1 EDTA solution. Thus, the study demonstrated low-cost MOFs with superior regeneration capabilities for the capture of Eu(III) ions from waste solutions.
科研通智能强力驱动
Strongly Powered by AbleSci AI