Machine Learning Prediction of the Yield and BET Area of Activated Carbon Quantitatively Relating to Biomass Compositions and Operating Conditions

碳化 活性炭 打赌理论 产量(工程) 生物量(生态学) 碳纤维 多孔性 比表面积 化学 化学工程 材料科学 有机化学 催化作用 复合材料 吸附 农学 复合数 工程类 生物
作者
Cong Wang,Wenbo Jiang,Guancong Jiang,Tonghuan Zhang,Kui He,Liwen Mu,Jiahua Zhu,Dechun Huang,Hongliang Qian,Xiaohua Lü
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:62 (28): 11016-11031 被引量:8
标识
DOI:10.1021/acs.iecr.3c00640
摘要

Although activated carbon's yield (quantity index) and BET area (quality index) are crucial to its application, the two indexes must be accurately predicted. Herein, biomass compositions (ultimate analysis, proximate analysis, and chemical analysis), operating conditions (mass ratio, carbonization time, carbonization temperature, activation time, and activation temperature) under physical activation (CO2 and steam), and chemical activation (H3PO4, KOH, and ZnCl2) conditions as input parameters were used to predict the two indexes of activated carbon simultaneously through the random forest (RF) method for the first time. In total, the samples (>1500 data) identified from experiments in the literature were used to train, validate, and test the RF models. The results show that the model built on ultimate analysis is more suitable for predicting the BET area and yield of activated carbon prepared by both physical and chemical activation. Therein, the R2 values of activated carbon's yield and BET area under the H3PO4 activation condition were the highest, which were 0.98 and 0.97, respectively. In addition, the influence of various factors and interactions on the target variables was analyzed. The results show that the hydrogen content has a large impact on the yield under physical activation conditions, and the mass ratio has the most contribution to the BET area under chemical activation conditions. This study affords achievable hints to the quantitative prediction of porous materials affected by multiple compositions of raw materials and different operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助小狮遛狗队采纳,获得30
刚刚
刚刚
刚刚
独特绿蓉完成签到 ,获得积分10
1秒前
1秒前
海莲完成签到,获得积分20
1秒前
whujiege完成签到,获得积分10
1秒前
2秒前
多多发SCI完成签到,获得积分10
2秒前
Oatmeal5888完成签到,获得积分10
3秒前
充电宝应助科研小白采纳,获得10
3秒前
快乐小夏发布了新的文献求助10
3秒前
3秒前
4秒前
静俏发布了新的文献求助10
4秒前
4秒前
小骁同学完成签到,获得积分10
4秒前
4秒前
Song完成签到,获得积分10
5秒前
emma完成签到,获得积分10
5秒前
Lucas应助俭朴咖啡采纳,获得10
5秒前
兴奋中道发布了新的文献求助10
6秒前
张张张xxx应助冷酷语蝶采纳,获得10
6秒前
淡淡的若冰完成签到 ,获得积分10
6秒前
聪明小丸子完成签到,获得积分10
7秒前
小易关注了科研通微信公众号
7秒前
Shirley应助若朴祭司采纳,获得10
7秒前
呼延坤完成签到,获得积分10
7秒前
8秒前
小铃铛完成签到 ,获得积分10
8秒前
王三发布了新的文献求助10
8秒前
zhang发布了新的文献求助10
8秒前
liu完成签到,获得积分10
8秒前
完美世界应助Michael采纳,获得10
8秒前
8秒前
9秒前
Song发布了新的文献求助10
9秒前
独特乘风完成签到,获得积分10
9秒前
shzlyynay发布了新的文献求助10
10秒前
oi完成签到,获得积分10
10秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147582
求助须知:如何正确求助?哪些是违规求助? 2798713
关于积分的说明 7830993
捐赠科研通 2455488
什么是DOI,文献DOI怎么找? 1306841
科研通“疑难数据库(出版商)”最低求助积分说明 627934
版权声明 601587