Prediction of bending strength of glass fiber reinforced methacrylate-based pipeline UV-CIPP rehabilitation materials based on machine learning

固化(化学) 材料科学 复合材料 粒子群优化 计算机科学 算法
作者
Yangyang Xia,Chao Zhang,Cuixia Wang,Hongjin Liu,Xinxin Sang,Ren Liu,Peng Zhao,AN Guan-feng,Hongyuan Fang,Mingsheng Shi,Bin Li,Yujia Yuan,Bokai Liu
出处
期刊:Tunnelling and Underground Space Technology [Elsevier]
卷期号:140: 105319-105319 被引量:2
标识
DOI:10.1016/j.tust.2023.105319
摘要

Ultraviolet cured-in-place-pipe (UV-CIPP) materials are commonly used in trenchless pipeline rehabilitation. Their bending strength is a crucial indicator to evaluate the curing quality. Studies show that this indicator is affected by multiple factors, including the curing time, UV lamp curing power, curing distance, and material thickness. Laboratory experiments have limitations in analyzing the effect of multiple factors on the bending strength of UV-CIPP materials and quantitatively predicting the optimum curing parameters. Aiming at resolving these shortcomings, resolve machine learning techniques were applied to predict the bending strength. In this regard, the surface curing reaction temperature monitoring data and three-point bending data of 30 groups of UV-CIPP material under the influence of different curing parameters were used as a dataset to predict the bending strength of UV-CIPP material. The results show that the influence degree of each factor on the bending strength of the UV-CIPP material, from high to low, is as follows: UV lamp power (−0.439), the temperature at the illuminated side (−0.392), curing time (−0.323), the temperature at the back side (−0.233), curing distance (0.143) and material thickness (−0.140). The best penalty parameter c (44.435) and width g (0.072) of the kernel function in the support vector machine (SVM) model were obtained using the genetic algorithm (GA) optimization, and the results were compared with the grey wolf optimizer (GWO) and particle swarm optimization (PSO). The performed analyses revealed that the developed GA-SVM model exhibits the best prediction results compared to other machine learning algorithms. The optimum bending strength of the UV-CIPP material used in this test is 294.77 MPa, which corresponds to the curing time, UV lamp power, curing distance, material thickness, light side temperature, and back side temperature of 7.59 min, 157.33 mW/cm2, 189.99 mm, 4.38 mm, 79.49 °C, and 76.59 °C, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助沐兮采纳,获得10
刚刚
科研进化中完成签到,获得积分10
刚刚
mimosa完成签到,获得积分10
刚刚
以鹿之路发布了新的文献求助10
1秒前
yile发布了新的文献求助10
1秒前
2秒前
六天发布了新的文献求助30
3秒前
4秒前
5秒前
mimosa发布了新的文献求助10
6秒前
科研通AI2S应助Fan采纳,获得10
6秒前
7秒前
清皓完成签到,获得积分10
7秒前
8秒前
傲娇犀牛完成签到,获得积分10
8秒前
ccx完成签到,获得积分10
9秒前
liang19640908完成签到 ,获得积分10
9秒前
9秒前
9秒前
10秒前
十四吉发布了新的文献求助10
10秒前
12秒前
RebeccaHe给阿泽的求助进行了留言
12秒前
温暖幻桃发布了新的文献求助10
12秒前
温水煮青蛙完成签到 ,获得积分10
13秒前
六天完成签到,获得积分20
15秒前
沐兮发布了新的文献求助10
15秒前
在水一方应助勤恳的雨文采纳,获得10
16秒前
xiekunwhy完成签到,获得积分10
19秒前
哇次阿普曼完成签到 ,获得积分10
19秒前
jiabaoyu完成签到 ,获得积分10
20秒前
打打应助胜道采纳,获得10
20秒前
糊涂的鞋垫完成签到 ,获得积分10
21秒前
科研通AI2S应助小雨采纳,获得10
22秒前
星河完成签到,获得积分10
22秒前
kingwhitewing完成签到,获得积分10
23秒前
星星草完成签到,获得积分10
23秒前
24秒前
震动的乐天完成签到,获得积分10
24秒前
所所应助壮观糖豆采纳,获得10
26秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159555
求助须知:如何正确求助?哪些是违规求助? 2810543
关于积分的说明 7888660
捐赠科研通 2469574
什么是DOI,文献DOI怎么找? 1314953
科研通“疑难数据库(出版商)”最低求助积分说明 630722
版权声明 602012