Prediction of bending strength of glass fiber reinforced methacrylate-based pipeline UV-CIPP rehabilitation materials based on machine learning

固化(化学) 材料科学 复合材料 粒子群优化 紫外线 计算机科学 算法 光电子学
作者
Yangyang Xia,Chao Zhang,Cuixia Wang,Hongjin Liu,Xinxin Sang,Ren Liu,Peng Zhao,AN Guan-feng,Hongyuan Fang,Mingsheng Shi,Bin Li,Yiming Yuan,Bokai Liu
出处
期刊:Tunnelling and Underground Space Technology [Elsevier]
卷期号:140: 105319-105319 被引量:17
标识
DOI:10.1016/j.tust.2023.105319
摘要

Ultraviolet cured-in-place-pipe (UV-CIPP) materials are commonly used in trenchless pipeline rehabilitation. Their bending strength is a crucial indicator to evaluate the curing quality. Studies show that this indicator is affected by multiple factors, including the curing time, UV lamp curing power, curing distance, and material thickness. Laboratory experiments have limitations in analyzing the effect of multiple factors on the bending strength of UV-CIPP materials and quantitatively predicting the optimum curing parameters. Aiming at resolving these shortcomings, resolve machine learning techniques were applied to predict the bending strength. In this regard, the surface curing reaction temperature monitoring data and three-point bending data of 30 groups of UV-CIPP material under the influence of different curing parameters were used as a dataset to predict the bending strength of UV-CIPP material. The results show that the influence degree of each factor on the bending strength of the UV-CIPP material, from high to low, is as follows: UV lamp power (−0.439), the temperature at the illuminated side (−0.392), curing time (−0.323), the temperature at the back side (−0.233), curing distance (0.143) and material thickness (−0.140). The best penalty parameter c (44.435) and width g (0.072) of the kernel function in the support vector machine (SVM) model were obtained using the genetic algorithm (GA) optimization, and the results were compared with the grey wolf optimizer (GWO) and particle swarm optimization (PSO). The performed analyses revealed that the developed GA-SVM model exhibits the best prediction results compared to other machine learning algorithms. The optimum bending strength of the UV-CIPP material used in this test is 294.77 MPa, which corresponds to the curing time, UV lamp power, curing distance, material thickness, light side temperature, and back side temperature of 7.59 min, 157.33 mW/cm2, 189.99 mm, 4.38 mm, 79.49 °C, and 76.59 °C, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈哈完成签到,获得积分10
刚刚
乐乐应助niceLDD采纳,获得10
刚刚
蜗牛发布了新的文献求助30
1秒前
不止玫瑰有爱意完成签到,获得积分10
2秒前
轻松雁枫发布了新的文献求助10
2秒前
二拾发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
林早上发布了新的文献求助10
4秒前
所所应助清脆的书桃采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
Criminology34应助孙泉采纳,获得10
6秒前
脑洞疼应助孙泉采纳,获得10
6秒前
天天向上发布了新的文献求助10
6秒前
可爱的函函应助优美紫槐采纳,获得10
6秒前
9秒前
大个应助清爽的如波采纳,获得10
11秒前
11秒前
二拾完成签到,获得积分10
11秒前
WW完成签到,获得积分10
11秒前
麦地娜发布了新的文献求助10
12秒前
小蘑菇应助glj采纳,获得30
12秒前
12秒前
lxd完成签到,获得积分10
13秒前
搜集达人应助Yuanyuan采纳,获得10
13秒前
15秒前
yang完成签到,获得积分10
15秒前
CodeCraft应助橘子采纳,获得10
15秒前
WW发布了新的文献求助10
15秒前
一个左正蹬完成签到,获得积分10
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
天天向上完成签到,获得积分10
20秒前
程小柒发布了新的文献求助10
21秒前
22秒前
CXS发布了新的文献求助10
22秒前
lemon发布了新的文献求助10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729634
求助须知:如何正确求助?哪些是违规求助? 5319737
关于积分的说明 15317209
捐赠科研通 4876640
什么是DOI,文献DOI怎么找? 2619450
邀请新用户注册赠送积分活动 1569001
关于科研通互助平台的介绍 1525547