Prediction of bending strength of glass fiber reinforced methacrylate-based pipeline UV-CIPP rehabilitation materials based on machine learning

固化(化学) 材料科学 复合材料 粒子群优化 紫外线 计算机科学 算法 光电子学
作者
Yangyang Xia,Chao Zhang,Cuixia Wang,Hongjin Liu,Xinxin Sang,Ren Liu,Peng Zhao,AN Guan-feng,Hongyuan Fang,Mingsheng Shi,Bin Li,Yiming Yuan,Bokai Liu
出处
期刊:Tunnelling and Underground Space Technology [Elsevier]
卷期号:140: 105319-105319 被引量:17
标识
DOI:10.1016/j.tust.2023.105319
摘要

Ultraviolet cured-in-place-pipe (UV-CIPP) materials are commonly used in trenchless pipeline rehabilitation. Their bending strength is a crucial indicator to evaluate the curing quality. Studies show that this indicator is affected by multiple factors, including the curing time, UV lamp curing power, curing distance, and material thickness. Laboratory experiments have limitations in analyzing the effect of multiple factors on the bending strength of UV-CIPP materials and quantitatively predicting the optimum curing parameters. Aiming at resolving these shortcomings, resolve machine learning techniques were applied to predict the bending strength. In this regard, the surface curing reaction temperature monitoring data and three-point bending data of 30 groups of UV-CIPP material under the influence of different curing parameters were used as a dataset to predict the bending strength of UV-CIPP material. The results show that the influence degree of each factor on the bending strength of the UV-CIPP material, from high to low, is as follows: UV lamp power (−0.439), the temperature at the illuminated side (−0.392), curing time (−0.323), the temperature at the back side (−0.233), curing distance (0.143) and material thickness (−0.140). The best penalty parameter c (44.435) and width g (0.072) of the kernel function in the support vector machine (SVM) model were obtained using the genetic algorithm (GA) optimization, and the results were compared with the grey wolf optimizer (GWO) and particle swarm optimization (PSO). The performed analyses revealed that the developed GA-SVM model exhibits the best prediction results compared to other machine learning algorithms. The optimum bending strength of the UV-CIPP material used in this test is 294.77 MPa, which corresponds to the curing time, UV lamp power, curing distance, material thickness, light side temperature, and back side temperature of 7.59 min, 157.33 mW/cm2, 189.99 mm, 4.38 mm, 79.49 °C, and 76.59 °C, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平淡南松完成签到,获得积分10
刚刚
研友_ED5GK完成签到,获得积分0
刚刚
舒适豌豆发布了新的文献求助10
刚刚
1秒前
生动的雨竹完成签到,获得积分10
1秒前
1秒前
啦啦啦完成签到,获得积分20
2秒前
silentJeremy完成签到,获得积分10
2秒前
2秒前
WNL发布了新的文献求助10
2秒前
3秒前
3秒前
玉yu完成签到 ,获得积分10
3秒前
嗯呢完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
5秒前
跳跃难胜发布了新的文献求助10
5秒前
大脸妹完成签到,获得积分10
5秒前
愤怒的源智完成签到 ,获得积分10
6秒前
6秒前
6秒前
ganson完成签到 ,获得积分10
6秒前
6秒前
HopeStar发布了新的文献求助10
7秒前
7秒前
bkagyin应助YL采纳,获得10
8秒前
共享精神应助一直采纳,获得10
8秒前
9秒前
无聊先知完成签到,获得积分10
9秒前
传奇3应助CC采纳,获得10
9秒前
Promise发布了新的文献求助10
9秒前
习习发布了新的文献求助100
10秒前
10秒前
11秒前
someone完成签到,获得积分10
11秒前
11秒前
wanyanjin应助南方姑娘采纳,获得10
11秒前
Star1983发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678