Prediction of bending strength of glass fiber reinforced methacrylate-based pipeline UV-CIPP rehabilitation materials based on machine learning

固化(化学) 材料科学 复合材料 粒子群优化 紫外线 计算机科学 算法 光电子学
作者
Yangyang Xia,Chao Zhang,Cuixia Wang,Hongjin Liu,Xinxin Sang,Ren Liu,Peng Zhao,AN Guan-feng,Hongyuan Fang,Mingsheng Shi,Bin Li,Yiming Yuan,Bokai Liu
出处
期刊:Tunnelling and Underground Space Technology [Elsevier BV]
卷期号:140: 105319-105319 被引量:17
标识
DOI:10.1016/j.tust.2023.105319
摘要

Ultraviolet cured-in-place-pipe (UV-CIPP) materials are commonly used in trenchless pipeline rehabilitation. Their bending strength is a crucial indicator to evaluate the curing quality. Studies show that this indicator is affected by multiple factors, including the curing time, UV lamp curing power, curing distance, and material thickness. Laboratory experiments have limitations in analyzing the effect of multiple factors on the bending strength of UV-CIPP materials and quantitatively predicting the optimum curing parameters. Aiming at resolving these shortcomings, resolve machine learning techniques were applied to predict the bending strength. In this regard, the surface curing reaction temperature monitoring data and three-point bending data of 30 groups of UV-CIPP material under the influence of different curing parameters were used as a dataset to predict the bending strength of UV-CIPP material. The results show that the influence degree of each factor on the bending strength of the UV-CIPP material, from high to low, is as follows: UV lamp power (−0.439), the temperature at the illuminated side (−0.392), curing time (−0.323), the temperature at the back side (−0.233), curing distance (0.143) and material thickness (−0.140). The best penalty parameter c (44.435) and width g (0.072) of the kernel function in the support vector machine (SVM) model were obtained using the genetic algorithm (GA) optimization, and the results were compared with the grey wolf optimizer (GWO) and particle swarm optimization (PSO). The performed analyses revealed that the developed GA-SVM model exhibits the best prediction results compared to other machine learning algorithms. The optimum bending strength of the UV-CIPP material used in this test is 294.77 MPa, which corresponds to the curing time, UV lamp power, curing distance, material thickness, light side temperature, and back side temperature of 7.59 min, 157.33 mW/cm2, 189.99 mm, 4.38 mm, 79.49 °C, and 76.59 °C, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CIOOICO1发布了新的文献求助10
1秒前
2秒前
饱满服饰发布了新的文献求助10
2秒前
慕白发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
siyuan发布了新的文献求助10
4秒前
你长得很下饭所以完成签到,获得积分10
5秒前
旱田蜗牛完成签到,获得积分10
5秒前
999999完成签到,获得积分20
5秒前
隐形曼青应助砂糖采纳,获得10
5秒前
山丘发布了新的文献求助10
6秒前
6秒前
Tourist应助爱拉臭粑采纳,获得10
6秒前
JamesPei应助鱼儿123采纳,获得30
6秒前
7秒前
夏儿完成签到,获得积分10
8秒前
lalala完成签到,获得积分10
8秒前
慕青应助绝不熬夜到2点采纳,获得10
8秒前
Troyl发布了新的文献求助10
8秒前
999999发布了新的文献求助10
9秒前
9秒前
薛言发布了新的文献求助30
10秒前
10秒前
Joyce完成签到,获得积分10
10秒前
慕白完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
yaoyao应助ahxb采纳,获得10
11秒前
roro熊完成签到,获得积分10
11秒前
11秒前
Cola完成签到,获得积分0
12秒前
赘婿应助2000pluv采纳,获得10
12秒前
13秒前
13秒前
缥缈冰珍完成签到,获得积分10
13秒前
酥酥发布了新的文献求助10
13秒前
一个薯片完成签到,获得积分10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5084648
求助须知:如何正确求助?哪些是违规求助? 4301274
关于积分的说明 13402455
捐赠科研通 4125720
什么是DOI,文献DOI怎么找? 2259524
邀请新用户注册赠送积分活动 1263746
关于科研通互助平台的介绍 1197909