西尔维斯特矩阵
克罗内克产品
西尔维斯特方程
西尔维斯特惯性定律
克罗内克三角洲
基质(化学分析)
秩(图论)
代数方程
计算机科学
迭代法
代数数
反向
应用数学
操作员(生物学)
摩尔-彭罗斯伪逆
域代数上的
数学
算法
对称矩阵
纯数学
数学分析
组合数学
特征向量
几何学
基因
非线性系统
转录因子
生物化学
化学
抑制因子
矩阵多项式
物理
量子力学
复合材料
多项式的
多项式矩阵
材料科学
出处
期刊:Cornell University - arXiv
日期:2023-01-01
标识
DOI:10.48550/arxiv.2307.07884
摘要
Sylvester matrix equations are ubiquitous in scientific computing. However, few solution techniques exist for their generalized multiterm version, as they now arise in an increasingly large number of applications. In this work, we consider algebraic parameter-free preconditioning techniques for the iterative solution of generalized multiterm Sylvester equations. They consist in constructing low Kronecker rank approximations of either the operator itself or its inverse. While the former requires solving standard Sylvester equations in each iteration, the latter only requires matrix-matrix multiplications, which are highly optimized on modern computer architectures. Moreover, low Kronecker rank approximate inverses can be easily combined with sparse approximate inverse techniques, thereby enhancing their performance with little or no damage to their effectiveness.
科研通智能强力驱动
Strongly Powered by AbleSci AI