The coupling effects of strain gradient and damage on Mode I crack tip stress fields

材料科学 裂缝闭合 复合材料 可塑性 裂纹扩展阻力曲线 断裂力学 裂纹尖端张开位移 应力场 消散 断裂(地质) 压力(语言学) 应力集中 劈理(地质) 结构工程 有限元法 语言学 哲学 物理 工程类 热力学
作者
Haoxuan Ban,Yin Yao
出处
期刊:Theoretical and Applied Fracture Mechanics [Elsevier BV]
卷期号:126: 103989-103989
标识
DOI:10.1016/j.tafmec.2023.103989
摘要

The cleavage fracture of metallic materials is determined by the crack tip stress field depending on plastic strain gradient and microstructural damage. The synergistic effects of strain gradient and damage on the stress fields near a Mode I crack tip in metallic materials are investigated using a modified conventional theory of mechanism-based strain gradient plasticity (CMSG). Besides preserving the essence of classical CMSG, a stress-dependent damage variable is introduced to characterize the effect of microstructural damage on the material's intrinsic length, elastic modulus and plastic yielding criterion. Based on the present theoretical model, it is found that the strain gradient and microstructural damage effects both are prominent in a small region near the Mode I crack tip, at which the damage evolution is determined by the strain gradient. Although the crack tip stress field with strain gradient and damage effects is lower than the existing ones influenced only by strain gradient, it is still significantly higher compared with the yielding strength of the material so that the cleavage fracture at the crack tip can be well explained. The damage-induced stress level reduction indicates that the stress concentration at the crack tip can be alleviated to inhibit the crack propagation. As a result, when the damage effect is considered, not only a larger external load is required to induce crack propagation but also the plastic region in front of the crack tip is enlarged, consequently leading to increases of fracture strength and energy dissipation in the material. The present research provides a more precise prediction of the crack tip stress distribution in metallic materials, which is helpful for better understanding the microscopic mechanism of the cleavage fracture phenomenon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西原的橙果完成签到,获得积分10
1秒前
Rookie完成签到 ,获得积分10
2秒前
JamesPei应助大利采纳,获得10
2秒前
王文豪发布了新的文献求助10
3秒前
羞涩的曼凡完成签到,获得积分10
4秒前
FloppyWow发布了新的文献求助10
4秒前
长情半邪完成签到 ,获得积分10
5秒前
领导范儿应助MRM采纳,获得10
5秒前
eli完成签到,获得积分10
5秒前
7秒前
闪闪的妙竹给闪闪的妙竹的求助进行了留言
7秒前
7秒前
陈龙完成签到,获得积分10
7秒前
10秒前
李爱国应助王文豪采纳,获得10
10秒前
Emily完成签到,获得积分20
11秒前
替我活着发布了新的文献求助10
11秒前
11秒前
12秒前
士心发布了新的文献求助30
12秒前
13秒前
15秒前
吃猫的鱼发布了新的文献求助10
15秒前
16秒前
无花果应助hyh采纳,获得10
16秒前
Meng发布了新的文献求助10
17秒前
今天只做一件事应助blenx采纳,获得10
17秒前
FloppyWow发布了新的文献求助10
17秒前
17秒前
18秒前
顾矜应助粗心的chen采纳,获得10
19秒前
zhaoming完成签到 ,获得积分10
20秒前
852应助123采纳,获得10
20秒前
缘一发布了新的文献求助10
20秒前
杨枝甘露发布了新的文献求助10
20秒前
威武豌豆发布了新的文献求助10
20秒前
zhc发布了新的文献求助10
21秒前
烟花应助龟蒙真人采纳,获得10
21秒前
MRM发布了新的文献求助10
21秒前
fff完成签到 ,获得积分10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672461
求助须知:如何正确求助?哪些是违规求助? 3228752
关于积分的说明 9781866
捐赠科研通 2939164
什么是DOI,文献DOI怎么找? 1610648
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174