计算机科学
人工智能
模式识别(心理学)
合成孔径雷达
计算机视觉
特征提取
高斯分布
匹配(统计)
缩放空间
特征(语言学)
旋转(数学)
滤波器(信号处理)
数学
图像(数学)
图像处理
统计
物理
哲学
量子力学
语言学
作者
Zhongli Fan,Mi Wang,Yingdong Pi,Yuxuan Liu,Huiwei Jiang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing
[Institute of Electrical and Electronics Engineers]
日期:2023-01-01
卷期号:61: 1-16
被引量:5
标识
DOI:10.1109/tgrs.2023.3288531
摘要
The accurate matching of multisource, multi-temporal remote sensing images is challenging because of significant nonlinear intensity differences (NIDs) and severe geometric distortions. To address these problems, we developed a robust image matching method: oriented filter-based matching (OFM). OFM is insensitive to NIDs, while exhibiting scale and rotational invariance. First, salient feature points with multiscale attributes were detected in the Gaussian-scale space of the input images. Then, the images were convoluted using multi-oriented filters, and unified feature maps were constructed by the extraction of orientation indices using effective data pooling operations. The constructed feature maps were highly resistant to NIDs. Five filters were integrated into the OFM framework to investigate their applicabilities in different application scenarios. Next, a novel rotation-invariant feature descriptor was constructed, using a dominant direction determination approach and a descriptor-grouping strategy. The dominant direction determination approach enables accurate dominant direction estimation, whereas the descriptor-grouping strategy improves the stability of the method under different rotational angles. Finally, brute-force matching was implemented to obtain initial matches; an improved mismatch elimination method was used to identify reliable putative matches. To evaluate the performance of OFM, we created a large dataset comprising 4,427 pairs of multitemporal optical–optical, optical–synthetic aperture radar (SAR), optical–infrared, and optical–depth images. OFM outperformed state-of-the-art methods in terms of number of correct matches, recall, inlier ratio, root mean square error and success rate. Our implement is publicly available 1 .
科研通智能强力驱动
Strongly Powered by AbleSci AI