A Robust Oriented Filter-Based Matching Method for Multisource, Multitemporal Remote Sensing Images

计算机科学 人工智能 模式识别(心理学) 合成孔径雷达 计算机视觉 特征提取 高斯分布 匹配(统计) 缩放空间 特征(语言学) 旋转(数学) 滤波器(信号处理) 数学 图像(数学) 图像处理 统计 物理 哲学 量子力学 语言学
作者
Zhongli Fan,Mi Wang,Yingdong Pi,Yuxuan Liu,Huiwei Jiang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:5
标识
DOI:10.1109/tgrs.2023.3288531
摘要

The accurate matching of multisource, multi-temporal remote sensing images is challenging because of significant nonlinear intensity differences (NIDs) and severe geometric distortions. To address these problems, we developed a robust image matching method: oriented filter-based matching (OFM). OFM is insensitive to NIDs, while exhibiting scale and rotational invariance. First, salient feature points with multiscale attributes were detected in the Gaussian-scale space of the input images. Then, the images were convoluted using multi-oriented filters, and unified feature maps were constructed by the extraction of orientation indices using effective data pooling operations. The constructed feature maps were highly resistant to NIDs. Five filters were integrated into the OFM framework to investigate their applicabilities in different application scenarios. Next, a novel rotation-invariant feature descriptor was constructed, using a dominant direction determination approach and a descriptor-grouping strategy. The dominant direction determination approach enables accurate dominant direction estimation, whereas the descriptor-grouping strategy improves the stability of the method under different rotational angles. Finally, brute-force matching was implemented to obtain initial matches; an improved mismatch elimination method was used to identify reliable putative matches. To evaluate the performance of OFM, we created a large dataset comprising 4,427 pairs of multitemporal optical–optical, optical–synthetic aperture radar (SAR), optical–infrared, and optical–depth images. OFM outperformed state-of-the-art methods in terms of number of correct matches, recall, inlier ratio, root mean square error and success rate. Our implement is publicly available 1 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Thien应助ww采纳,获得10
1秒前
1秒前
Harbour-Y完成签到 ,获得积分10
2秒前
11mao11完成签到 ,获得积分10
4秒前
华仔应助dreamfox采纳,获得10
5秒前
dzc发布了新的文献求助20
5秒前
7秒前
healer完成签到,获得积分10
12秒前
14秒前
忘词完成签到,获得积分10
15秒前
chen完成签到 ,获得积分10
15秒前
萝卜卷心菜完成签到 ,获得积分10
17秒前
19秒前
目m发布了新的文献求助10
19秒前
20秒前
王也发布了新的文献求助10
25秒前
Bailey完成签到,获得积分10
25秒前
26秒前
脑洞疼应助MoNeng采纳,获得10
28秒前
28秒前
蓝天应助加贝采纳,获得10
29秒前
30秒前
刘泽民完成签到,获得积分10
32秒前
CodeCraft应助佳期采纳,获得10
33秒前
浮游应助草中有粑粑采纳,获得10
33秒前
小二郎应助YEZQ采纳,获得10
34秒前
34秒前
35秒前
35秒前
椰子完成签到,获得积分10
37秒前
dzc完成签到,获得积分20
38秒前
Lyubb完成签到 ,获得积分10
39秒前
MoNeng发布了新的文献求助10
40秒前
41秒前
月半完成签到,获得积分10
41秒前
42秒前
VDC应助karstbing采纳,获得30
42秒前
浮游应助草中有粑粑采纳,获得10
42秒前
Orange应助冰激凌采纳,获得10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563635
求助须知:如何正确求助?哪些是违规求助? 4648551
关于积分的说明 14685268
捐赠科研通 4590482
什么是DOI,文献DOI怎么找? 2518601
邀请新用户注册赠送积分活动 1491196
关于科研通互助平台的介绍 1462478