清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Generative Joint Source-Channel Coding for Semantic Image Transmission

计算机科学 图像质量 人工智能 编码器 模式识别(心理学) 算法 图像(数学) 操作系统
作者
Ecenaz Erdemir,Tze-Yang Tung,Pier Luigi Dragotti,Denız Gündüz
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:41 (8): 2645-2657 被引量:97
标识
DOI:10.1109/jsac.2023.3288243
摘要

Recent works have shown that joint source-channel coding (JSCC) schemes using deep neural networks (DNNs), called DeepJSCC, provide promising results in wireless image transmission. However, these methods mostly focus on the distortion of the reconstructed signals with respect to the input image, rather than their perception by humans. However, focusing on traditional distortion metrics alone does not necessarily result in high perceptual quality, especially in extreme physical conditions, such as very low bandwidth compression ratio (BCR) and low signal-to-noise ratio (SNR) regimes. In this work, we propose two novel JSCC schemes that leverage the perceptual quality of deep generative models (DGMs) for wireless image transmission, namely InverseJSCC and GenerativeJSCC. While the former is an inverse problem approach to DeepJSCC, the latter is an end-to-end optimized JSCC scheme. In both, we optimize a weighted sum of mean squared error (MSE) and learned perceptual image patch similarity (LPIPS) losses, which capture more semantic similarities than other distortion metrics. InverseJSCC performs denoising on the distorted reconstructions of a DeepJSCC model by solving an inverse optimization problem using the pre-trained style-based generative adversarial network (StyleGAN). Our simulation results show that InverseJSCC significantly improves the state-of-the-art DeepJSCC in terms of perceptual quality in edge cases. In GenerativeJSCC, we carry out end-to-end training of an encoder and a StyleGAN-based decoder, and show that GenerativeJSCC significantly outperforms DeepJSCC both in terms of distortion and perceptual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
大个应助内向的绿采纳,获得10
11秒前
打打应助Hancen采纳,获得10
15秒前
NexusExplorer应助Z先生采纳,获得10
27秒前
35秒前
Z先生发布了新的文献求助10
39秒前
Z先生完成签到,获得积分20
48秒前
1分钟前
内向的绿发布了新的文献求助10
1分钟前
1分钟前
端庄洪纲完成签到 ,获得积分10
1分钟前
1分钟前
嘻嘻哈哈发布了新的文献求助10
1分钟前
科研通AI6.1应助内向的绿采纳,获得10
1分钟前
不如看海完成签到 ,获得积分10
2分钟前
2分钟前
小珂完成签到 ,获得积分10
2分钟前
2分钟前
内向的绿发布了新的文献求助10
2分钟前
辣小扬完成签到 ,获得积分10
2分钟前
科研通AI6.1应助内向的绿采纳,获得10
2分钟前
3分钟前
Hancen发布了新的文献求助10
3分钟前
Hancen完成签到,获得积分10
3分钟前
Sunny完成签到,获得积分10
3分钟前
3分钟前
内向的绿发布了新的文献求助10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6.1应助内向的绿采纳,获得10
3分钟前
4分钟前
大胆的碧菡完成签到,获得积分10
4分钟前
4分钟前
内向的绿发布了新的文献求助10
4分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
大医仁心完成签到 ,获得积分10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773003
求助须知:如何正确求助?哪些是违规求助? 5605278
关于积分的说明 15430310
捐赠科研通 4905739
什么是DOI,文献DOI怎么找? 2639693
邀请新用户注册赠送积分活动 1587589
关于科研通互助平台的介绍 1542554