亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Generative Joint Source-Channel Coding for Semantic Image Transmission

计算机科学 图像质量 人工智能 编码器 模式识别(心理学) 算法 图像(数学) 操作系统
作者
Ecenaz Erdemir,Tze-Yang Tung,Pier Luigi Dragotti,Denız Gündüz
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:41 (8): 2645-2657 被引量:97
标识
DOI:10.1109/jsac.2023.3288243
摘要

Recent works have shown that joint source-channel coding (JSCC) schemes using deep neural networks (DNNs), called DeepJSCC, provide promising results in wireless image transmission. However, these methods mostly focus on the distortion of the reconstructed signals with respect to the input image, rather than their perception by humans. However, focusing on traditional distortion metrics alone does not necessarily result in high perceptual quality, especially in extreme physical conditions, such as very low bandwidth compression ratio (BCR) and low signal-to-noise ratio (SNR) regimes. In this work, we propose two novel JSCC schemes that leverage the perceptual quality of deep generative models (DGMs) for wireless image transmission, namely InverseJSCC and GenerativeJSCC. While the former is an inverse problem approach to DeepJSCC, the latter is an end-to-end optimized JSCC scheme. In both, we optimize a weighted sum of mean squared error (MSE) and learned perceptual image patch similarity (LPIPS) losses, which capture more semantic similarities than other distortion metrics. InverseJSCC performs denoising on the distorted reconstructions of a DeepJSCC model by solving an inverse optimization problem using the pre-trained style-based generative adversarial network (StyleGAN). Our simulation results show that InverseJSCC significantly improves the state-of-the-art DeepJSCC in terms of perceptual quality in edge cases. In GenerativeJSCC, we carry out end-to-end training of an encoder and a StyleGAN-based decoder, and show that GenerativeJSCC significantly outperforms DeepJSCC both in terms of distortion and perceptual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
没见云发布了新的文献求助10
2秒前
3秒前
7秒前
10秒前
秦时明月发布了新的文献求助10
13秒前
15秒前
19秒前
请输入昵称完成签到 ,获得积分10
21秒前
Jeongin发布了新的文献求助10
24秒前
25秒前
Freedom完成签到 ,获得积分10
30秒前
xiaobizaizhi233完成签到,获得积分10
33秒前
可乐完成签到 ,获得积分10
35秒前
35秒前
Jeongin完成签到,获得积分10
35秒前
量子星尘发布了新的文献求助10
43秒前
科目三应助OYJH采纳,获得10
53秒前
科研兵完成签到 ,获得积分10
57秒前
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
科研通AI6.1应助Okanryo采纳,获得10
1分钟前
sulin完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
如意秋珊完成签到 ,获得积分10
1分钟前
秦时明月发布了新的文献求助10
1分钟前
丁一发布了新的文献求助10
1分钟前
1分钟前
1分钟前
孙泉发布了新的文献求助10
1分钟前
pegasus0802完成签到,获得积分10
1分钟前
Gryphon完成签到,获得积分10
1分钟前
钮钴禄鬼鬼完成签到 ,获得积分10
2分钟前
Akim应助孙泉采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755160
求助须知:如何正确求助?哪些是违规求助? 5491833
关于积分的说明 15380956
捐赠科研通 4893420
什么是DOI,文献DOI怎么找? 2632044
邀请新用户注册赠送积分活动 1579872
关于科研通互助平台的介绍 1535729