Generative Joint Source-Channel Coding for Semantic Image Transmission

计算机科学 图像质量 人工智能 编码器 模式识别(心理学) 算法 图像(数学) 操作系统
作者
Ecenaz Erdemir,Tze-Yang Tung,Pier Luigi Dragotti,Deniz Gündüz
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:41 (8): 2645-2657 被引量:39
标识
DOI:10.1109/jsac.2023.3288243
摘要

Recent works have shown that joint source-channel coding (JSCC) schemes using deep neural networks (DNNs), called DeepJSCC, provide promising results in wireless image transmission. However, these methods mostly focus on the distortion of the reconstructed signals with respect to the input image, rather than their perception by humans. However, focusing on traditional distortion metrics alone does not necessarily result in high perceptual quality, especially in extreme physical conditions, such as very low bandwidth compression ratio (BCR) and low signal-to-noise ratio (SNR) regimes. In this work, we propose two novel JSCC schemes that leverage the perceptual quality of deep generative models (DGMs) for wireless image transmission, namely InverseJSCC and GenerativeJSCC. While the former is an inverse problem approach to DeepJSCC, the latter is an end-to-end optimized JSCC scheme. In both, we optimize a weighted sum of mean squared error (MSE) and learned perceptual image patch similarity (LPIPS) losses, which capture more semantic similarities than other distortion metrics. InverseJSCC performs denoising on the distorted reconstructions of a DeepJSCC model by solving an inverse optimization problem using the pre-trained style-based generative adversarial network (StyleGAN). Our simulation results show that InverseJSCC significantly improves the state-of-the-art DeepJSCC in terms of perceptual quality in edge cases. In GenerativeJSCC, we carry out end-to-end training of an encoder and a StyleGAN-based decoder, and show that GenerativeJSCC significantly outperforms DeepJSCC both in terms of distortion and perceptual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
xslj发布了新的文献求助10
4秒前
4秒前
赘婿应助江水采纳,获得10
5秒前
打打应助无聊的炎彬采纳,获得10
6秒前
Lucas应助葡萄味的果茶采纳,获得10
6秒前
爱卿5271发布了新的文献求助10
6秒前
6秒前
小小肖发布了新的文献求助10
8秒前
10秒前
TillySss完成签到,获得积分10
11秒前
缥缈孤鸿影完成签到 ,获得积分10
11秒前
zzz完成签到,获得积分10
11秒前
adi发布了新的文献求助10
13秒前
qqwrv发布了新的文献求助10
14秒前
NexusExplorer应助小小肖采纳,获得10
16秒前
17秒前
mojojo完成签到 ,获得积分10
17秒前
greentea完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
共享精神应助直率的颜演采纳,获得10
18秒前
慕青应助梦想家采纳,获得20
18秒前
qi完成签到,获得积分10
19秒前
21秒前
22秒前
23秒前
lidongxing发布了新的文献求助10
24秒前
25秒前
随遇而安发布了新的文献求助10
26秒前
da发布了新的文献求助10
27秒前
greentea发布了新的文献求助10
27秒前
FashionBoy应助坚强的千万采纳,获得10
27秒前
YamDaamCaa应助快点毕业采纳,获得30
32秒前
绛仙旧友发布了新的文献求助10
32秒前
39秒前
yar应助qqwrv采纳,获得10
43秒前
李冯程完成签到,获得积分10
43秒前
ZZ发布了新的文献求助10
44秒前
木木圆完成签到 ,获得积分10
45秒前
绛仙旧友完成签到,获得积分10
46秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979719
求助须知:如何正确求助?哪些是违规求助? 3523746
关于积分的说明 11218449
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800495
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182