Generative Joint Source-Channel Coding for Semantic Image Transmission

计算机科学 图像质量 人工智能 编码器 模式识别(心理学) 算法 图像(数学) 操作系统
作者
Ecenaz Erdemir,Tze-Yang Tung,Pier Luigi Dragotti,Denız Gündüz
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:41 (8): 2645-2657 被引量:97
标识
DOI:10.1109/jsac.2023.3288243
摘要

Recent works have shown that joint source-channel coding (JSCC) schemes using deep neural networks (DNNs), called DeepJSCC, provide promising results in wireless image transmission. However, these methods mostly focus on the distortion of the reconstructed signals with respect to the input image, rather than their perception by humans. However, focusing on traditional distortion metrics alone does not necessarily result in high perceptual quality, especially in extreme physical conditions, such as very low bandwidth compression ratio (BCR) and low signal-to-noise ratio (SNR) regimes. In this work, we propose two novel JSCC schemes that leverage the perceptual quality of deep generative models (DGMs) for wireless image transmission, namely InverseJSCC and GenerativeJSCC. While the former is an inverse problem approach to DeepJSCC, the latter is an end-to-end optimized JSCC scheme. In both, we optimize a weighted sum of mean squared error (MSE) and learned perceptual image patch similarity (LPIPS) losses, which capture more semantic similarities than other distortion metrics. InverseJSCC performs denoising on the distorted reconstructions of a DeepJSCC model by solving an inverse optimization problem using the pre-trained style-based generative adversarial network (StyleGAN). Our simulation results show that InverseJSCC significantly improves the state-of-the-art DeepJSCC in terms of perceptual quality in edge cases. In GenerativeJSCC, we carry out end-to-end training of an encoder and a StyleGAN-based decoder, and show that GenerativeJSCC significantly outperforms DeepJSCC both in terms of distortion and perceptual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asdfqwer应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
香蕉诗蕊应助科研通管家采纳,获得10
刚刚
归尘应助科研通管家采纳,获得10
刚刚
1秒前
asdfqwer应助科研通管家采纳,获得10
1秒前
stiger应助科研通管家采纳,获得20
1秒前
1秒前
筱鳴童學应助科研通管家采纳,获得10
1秒前
sule发布了新的文献求助10
1秒前
sule发布了新的文献求助10
1秒前
sule发布了新的文献求助10
1秒前
sule发布了新的文献求助10
1秒前
Reset发布了新的文献求助10
1秒前
付其喜完成签到 ,获得积分10
2秒前
4秒前
Jinnnnn完成签到,获得积分10
5秒前
胡图图完成签到,获得积分10
6秒前
7秒前
7秒前
科研通AI2S应助zhengzhao采纳,获得10
8秒前
好运常在完成签到,获得积分10
8秒前
lq完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助30
13秒前
灵巧的熊猫完成签到,获得积分10
13秒前
Archer完成签到 ,获得积分10
13秒前
cavendipeng完成签到,获得积分10
14秒前
14秒前
大Lee完成签到,获得积分10
15秒前
yue完成签到,获得积分10
17秒前
余如龙完成签到,获得积分10
17秒前
gincle完成签到,获得积分10
19秒前
是达达哦完成签到,获得积分10
19秒前
20秒前
Reset完成签到,获得积分10
21秒前
光亮的青文完成签到 ,获得积分10
21秒前
小二郎应助lalala采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733231
求助须知:如何正确求助?哪些是违规求助? 5347351
关于积分的说明 15323400
捐赠科研通 4878359
什么是DOI,文献DOI怎么找? 2621189
邀请新用户注册赠送积分活动 1570317
关于科研通互助平台的介绍 1527219