Generative Joint Source-Channel Coding for Semantic Image Transmission

计算机科学 图像质量 人工智能 编码器 模式识别(心理学) 算法 图像(数学) 操作系统
作者
Ecenaz Erdemir,Tze-Yang Tung,Pier Luigi Dragotti,Deniz Gündüz
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:41 (8): 2645-2657 被引量:22
标识
DOI:10.1109/jsac.2023.3288243
摘要

Recent works have shown that joint source-channel coding (JSCC) schemes using deep neural networks (DNNs), called DeepJSCC, provide promising results in wireless image transmission. However, these methods mostly focus on the distortion of the reconstructed signals with respect to the input image, rather than their perception by humans. However, focusing on traditional distortion metrics alone does not necessarily result in high perceptual quality, especially in extreme physical conditions, such as very low bandwidth compression ratio (BCR) and low signal-to-noise ratio (SNR) regimes. In this work, we propose two novel JSCC schemes that leverage the perceptual quality of deep generative models (DGMs) for wireless image transmission, namely InverseJSCC and GenerativeJSCC. While the former is an inverse problem approach to DeepJSCC, the latter is an end-to-end optimized JSCC scheme. In both, we optimize a weighted sum of mean squared error (MSE) and learned perceptual image patch similarity (LPIPS) losses, which capture more semantic similarities than other distortion metrics. InverseJSCC performs denoising on the distorted reconstructions of a DeepJSCC model by solving an inverse optimization problem using the pre-trained style-based generative adversarial network (StyleGAN). Our simulation results show that InverseJSCC significantly improves the state-of-the-art DeepJSCC in terms of perceptual quality in edge cases. In GenerativeJSCC, we carry out end-to-end training of an encoder and a StyleGAN-based decoder, and show that GenerativeJSCC significantly outperforms DeepJSCC both in terms of distortion and perceptual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岁月间应助苏玖染采纳,获得10
刚刚
刚刚
Suyi完成签到,获得积分10
1秒前
赘婿应助Promise采纳,获得10
1秒前
1234发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
3秒前
田様应助绿泡泡采纳,获得10
3秒前
3秒前
yao完成签到,获得积分10
3秒前
Elio完成签到 ,获得积分10
4秒前
LIU完成签到,获得积分10
4秒前
薄荷喵完成签到,获得积分10
5秒前
泊頔完成签到,获得积分10
5秒前
成就的念双完成签到,获得积分10
5秒前
清脆大门发布了新的文献求助10
6秒前
tusizi2006完成签到,获得积分10
6秒前
6秒前
7秒前
兴奋皮卡丘完成签到,获得积分10
7秒前
YUYUYU完成签到,获得积分10
8秒前
cheng发布了新的文献求助10
8秒前
xxddw完成签到,获得积分10
8秒前
8秒前
9秒前
12345完成签到 ,获得积分20
9秒前
9秒前
所所应助sanmu采纳,获得10
9秒前
tusizi2006发布了新的文献求助10
9秒前
个性跳跳糖完成签到,获得积分10
9秒前
10秒前
journey完成签到 ,获得积分10
10秒前
NYM完成签到 ,获得积分10
11秒前
卡拉米完成签到,获得积分10
11秒前
12秒前
嘟嘟完成签到,获得积分10
12秒前
福福完成签到,获得积分10
12秒前
13秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167746
求助须知:如何正确求助?哪些是违规求助? 2819117
关于积分的说明 7925260
捐赠科研通 2479015
什么是DOI,文献DOI怎么找? 1320596
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443