Generative Joint Source-Channel Coding for Semantic Image Transmission

计算机科学 图像质量 人工智能 编码器 模式识别(心理学) 算法 图像(数学) 操作系统
作者
Ecenaz Erdemir,Tze-Yang Tung,Pier Luigi Dragotti,Deniz Gündüz
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:41 (8): 2645-2657 被引量:39
标识
DOI:10.1109/jsac.2023.3288243
摘要

Recent works have shown that joint source-channel coding (JSCC) schemes using deep neural networks (DNNs), called DeepJSCC, provide promising results in wireless image transmission. However, these methods mostly focus on the distortion of the reconstructed signals with respect to the input image, rather than their perception by humans. However, focusing on traditional distortion metrics alone does not necessarily result in high perceptual quality, especially in extreme physical conditions, such as very low bandwidth compression ratio (BCR) and low signal-to-noise ratio (SNR) regimes. In this work, we propose two novel JSCC schemes that leverage the perceptual quality of deep generative models (DGMs) for wireless image transmission, namely InverseJSCC and GenerativeJSCC. While the former is an inverse problem approach to DeepJSCC, the latter is an end-to-end optimized JSCC scheme. In both, we optimize a weighted sum of mean squared error (MSE) and learned perceptual image patch similarity (LPIPS) losses, which capture more semantic similarities than other distortion metrics. InverseJSCC performs denoising on the distorted reconstructions of a DeepJSCC model by solving an inverse optimization problem using the pre-trained style-based generative adversarial network (StyleGAN). Our simulation results show that InverseJSCC significantly improves the state-of-the-art DeepJSCC in terms of perceptual quality in edge cases. In GenerativeJSCC, we carry out end-to-end training of an encoder and a StyleGAN-based decoder, and show that GenerativeJSCC significantly outperforms DeepJSCC both in terms of distortion and perceptual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助木槿采纳,获得10
刚刚
hh完成签到,获得积分10
刚刚
邓111111完成签到 ,获得积分10
刚刚
秋秋儿发布了新的文献求助10
1秒前
1秒前
1秒前
EWW完成签到,获得积分10
2秒前
善良的雨筠完成签到,获得积分10
2秒前
音吹完成签到,获得积分10
2秒前
CipherSage应助陈住气采纳,获得10
2秒前
3秒前
kelakola完成签到,获得积分10
3秒前
3秒前
斯文败类应助咖褐采纳,获得10
3秒前
hh发布了新的文献求助10
4秒前
科研通AI6应助Albert采纳,获得10
4秒前
wanci应助勤恳青亦采纳,获得10
4秒前
LL发布了新的文献求助10
4秒前
5秒前
笑忘书发布了新的文献求助10
5秒前
王多鱼发布了新的文献求助10
5秒前
HYH完成签到,获得积分10
6秒前
6秒前
6秒前
18863933521发布了新的文献求助10
6秒前
吴彬完成签到,获得积分10
7秒前
霸气的凝竹完成签到,获得积分10
7秒前
8秒前
Sharif318发布了新的文献求助50
8秒前
18781913856完成签到 ,获得积分10
8秒前
热情依白发布了新的文献求助10
8秒前
科研通AI6应助饶天源采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
田様应助齐平露采纳,获得10
8秒前
桐桐应助hahahapan采纳,获得10
9秒前
9秒前
9秒前
Hilda007发布了新的文献求助30
9秒前
9秒前
鳗鱼饭饭发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468825
求助须知:如何正确求助?哪些是违规求助? 4572157
关于积分的说明 14333943
捐赠科研通 4498964
什么是DOI,文献DOI怎么找? 2464789
邀请新用户注册赠送积分活动 1453376
关于科研通互助平台的介绍 1427939