Generative Joint Source-Channel Coding for Semantic Image Transmission

计算机科学 图像质量 人工智能 编码器 模式识别(心理学) 算法 图像(数学) 操作系统
作者
Ecenaz Erdemir,Tze-Yang Tung,Pier Luigi Dragotti,Denız Gündüz
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:41 (8): 2645-2657 被引量:97
标识
DOI:10.1109/jsac.2023.3288243
摘要

Recent works have shown that joint source-channel coding (JSCC) schemes using deep neural networks (DNNs), called DeepJSCC, provide promising results in wireless image transmission. However, these methods mostly focus on the distortion of the reconstructed signals with respect to the input image, rather than their perception by humans. However, focusing on traditional distortion metrics alone does not necessarily result in high perceptual quality, especially in extreme physical conditions, such as very low bandwidth compression ratio (BCR) and low signal-to-noise ratio (SNR) regimes. In this work, we propose two novel JSCC schemes that leverage the perceptual quality of deep generative models (DGMs) for wireless image transmission, namely InverseJSCC and GenerativeJSCC. While the former is an inverse problem approach to DeepJSCC, the latter is an end-to-end optimized JSCC scheme. In both, we optimize a weighted sum of mean squared error (MSE) and learned perceptual image patch similarity (LPIPS) losses, which capture more semantic similarities than other distortion metrics. InverseJSCC performs denoising on the distorted reconstructions of a DeepJSCC model by solving an inverse optimization problem using the pre-trained style-based generative adversarial network (StyleGAN). Our simulation results show that InverseJSCC significantly improves the state-of-the-art DeepJSCC in terms of perceptual quality in edge cases. In GenerativeJSCC, we carry out end-to-end training of an encoder and a StyleGAN-based decoder, and show that GenerativeJSCC significantly outperforms DeepJSCC both in terms of distortion and perceptual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助怕黑的凝旋采纳,获得20
1秒前
HZW发布了新的文献求助10
1秒前
2秒前
3秒前
gzj完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
香蕉觅云应助整齐百褶裙采纳,获得10
4秒前
在水一方应助hang采纳,获得10
5秒前
5秒前
5秒前
感谢大哥的帮助完成签到 ,获得积分10
6秒前
6秒前
乐乐应助勤劳火车采纳,获得30
7秒前
8秒前
友好雅柏完成签到,获得积分10
9秒前
9秒前
9秒前
高高诗柳发布了新的文献求助10
9秒前
9秒前
大模型应助大方平蓝采纳,获得10
9秒前
风起人散发布了新的文献求助10
10秒前
10秒前
Ivy完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
13秒前
13秒前
14秒前
森林完成签到 ,获得积分10
14秒前
拧发条Cris完成签到,获得积分10
15秒前
Orange应助谦让的灵阳采纳,获得10
15秒前
16秒前
16秒前
小鱼女侠发布了新的文献求助10
16秒前
原子格致发布了新的文献求助10
16秒前
宝剑葫芦发布了新的文献求助10
16秒前
冷咖啡离开了杯垫完成签到,获得积分10
17秒前
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749224
求助须知:如何正确求助?哪些是违规求助? 5456884
关于积分的说明 15362980
捐赠科研通 4888661
什么是DOI,文献DOI怎么找? 2628626
邀请新用户注册赠送积分活动 1576952
关于科研通互助平台的介绍 1533670