Generative Joint Source-Channel Coding for Semantic Image Transmission

计算机科学 图像质量 人工智能 编码器 模式识别(心理学) 算法 图像(数学) 操作系统
作者
Ecenaz Erdemir,Tze-Yang Tung,Pier Luigi Dragotti,Denız Gündüz
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:41 (8): 2645-2657 被引量:97
标识
DOI:10.1109/jsac.2023.3288243
摘要

Recent works have shown that joint source-channel coding (JSCC) schemes using deep neural networks (DNNs), called DeepJSCC, provide promising results in wireless image transmission. However, these methods mostly focus on the distortion of the reconstructed signals with respect to the input image, rather than their perception by humans. However, focusing on traditional distortion metrics alone does not necessarily result in high perceptual quality, especially in extreme physical conditions, such as very low bandwidth compression ratio (BCR) and low signal-to-noise ratio (SNR) regimes. In this work, we propose two novel JSCC schemes that leverage the perceptual quality of deep generative models (DGMs) for wireless image transmission, namely InverseJSCC and GenerativeJSCC. While the former is an inverse problem approach to DeepJSCC, the latter is an end-to-end optimized JSCC scheme. In both, we optimize a weighted sum of mean squared error (MSE) and learned perceptual image patch similarity (LPIPS) losses, which capture more semantic similarities than other distortion metrics. InverseJSCC performs denoising on the distorted reconstructions of a DeepJSCC model by solving an inverse optimization problem using the pre-trained style-based generative adversarial network (StyleGAN). Our simulation results show that InverseJSCC significantly improves the state-of-the-art DeepJSCC in terms of perceptual quality in edge cases. In GenerativeJSCC, we carry out end-to-end training of an encoder and a StyleGAN-based decoder, and show that GenerativeJSCC significantly outperforms DeepJSCC both in terms of distortion and perceptual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老福贵儿应助smallsix采纳,获得10
1秒前
田様应助小华安采纳,获得10
2秒前
2秒前
wx0816发布了新的文献求助10
2秒前
ZOE应助大力蚂蚁采纳,获得50
3秒前
科目三应助退休小行星采纳,获得10
4秒前
6秒前
kk完成签到 ,获得积分10
6秒前
8秒前
8秒前
11秒前
zz发布了新的文献求助10
11秒前
wx0816完成签到,获得积分10
11秒前
12秒前
JingjingYao完成签到,获得积分10
13秒前
weiwei完成签到,获得积分10
13秒前
DD0066发布了新的文献求助10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
ieee拯救者完成签到,获得积分10
14秒前
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
天天快乐应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
lexi应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
zhonglv7应助科研通管家采纳,获得10
15秒前
曾无忧应助科研通管家采纳,获得10
15秒前
曾无忧应助科研通管家采纳,获得10
15秒前
曾无忧应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
如溪如何完成签到,获得积分10
16秒前
Jasper应助呵呵呵采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603927
求助须知:如何正确求助?哪些是违规求助? 4688787
关于积分的说明 14856110
捐赠科研通 4695468
什么是DOI,文献DOI怎么找? 2541034
邀请新用户注册赠送积分活动 1507185
关于科研通互助平台的介绍 1471832