图像拼接
计算机视觉
人工智能
计算机科学
代表(政治)
深度图
视图合成
面子(社会学概念)
图像(数学)
虚拟表示法
立体视觉
计算机图形学(图像)
社会学
政治
法学
渲染(计算机图形)
社会科学
政治学
作者
Jaroslav Venjarski,Šimon Tibenský,Gregor Rozinaj
标识
DOI:10.1109/iwssip58668.2023.10180238
摘要
This article examines two image stitching methods for creating seamless images in stereo vision applications: a classical OpenCV-based approach and a depth-aware technique. Conventional methods, while effective for 2D image stitching, face limitations when applied to 3D scene reconstruction, where accurate depth information is crucial. We introduce a depth-aware image stitching method that utilizes depth maps to enhance alignment and blending in 3D scenes, demonstrating its superiority through comparative experiments. Depth-aware stitching offers notable advantages over classical methods in 3D scene reconstruction, reducing artifacts, minimizing distortions, and providing an accurate 3D representation, emphasizing the importance of depth estimation in image stitching and encouraging further research in this area.
科研通智能强力驱动
Strongly Powered by AbleSci AI