A Smart Predict-then-Optimize method for dynamic green bike relocation in the free-floating system

重新安置 TRIPS体系结构 共享单车 运输工程 计算机科学 地铁列车时刻表 运筹学 模拟 工程类 操作系统 程序设计语言
作者
Ximing Chang,Jianjun Wu,Huijun Sun,Xuedong Yan
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:153: 104220-104220 被引量:2
标识
DOI:10.1016/j.trc.2023.104220
摘要

Cities are facing numerous challenges such as road traffic congestion and environmental pollution. Bike-sharing, as an emission-free travel mode, aligns with the principle of green and environmental protection and serves mainly for short-distance trips in urban areas. Shared bikes pose significant issues to operators due to supply–demand imbalances across different time and space. This study proposes a Smart Predict-then-Optimize method for dynamic green bike relocation in the free-floating system, which aims to minimize the cost of fuel and carbon emissions from repositioning vehicles and the total unmet demand during the operating period. A multi-task deep neural network model is designed to predict regional inflow and outflow demand, where targeted modules are embedded to extract the spatio-temporal characteristics. Potential unusable shared bikes are discovered from the users’ travel behavior and the usage characteristics of shared bikes. Then, we build a data-driven optimization model for bike-sharing relocation and design an iterative decomposition algorithm that incorporates an adaptive large neighborhood search for relocation routes and vehicle speed optimization. The proposed method is tested on real-world bike-sharing trips in Shenzhen, China, and results show that the relocation distance and carbon emission cost can be reduced by 11.69% and 14.09% by relocating operational bikes and unusable bikes simultaneously. Additionally, route decision-making with speed optimization can decrease the total fuel and emission, where considering the collection of unusable bikes help improve the service level of the system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
念姬发布了新的文献求助10
刚刚
刚刚
1秒前
少女徐必成完成签到 ,获得积分10
1秒前
溜达鸡完成签到,获得积分10
1秒前
尔尔完成签到,获得积分10
3秒前
tonyhuang完成签到,获得积分10
4秒前
memo完成签到,获得积分10
6秒前
8秒前
8秒前
落寞银耳汤完成签到,获得积分10
9秒前
谦让的博完成签到,获得积分10
9秒前
yunyii发布了新的文献求助10
12秒前
Fengkai_CHEN发布了新的文献求助30
15秒前
yangyl完成签到,获得积分10
17秒前
17秒前
17秒前
666应助CHENG采纳,获得10
18秒前
yangyl发布了新的文献求助10
19秒前
王二萌完成签到 ,获得积分10
23秒前
丰那个丰发布了新的文献求助10
23秒前
断章完成签到 ,获得积分10
24秒前
顾矜应助缥缈飞鸟采纳,获得10
26秒前
26秒前
彭于晏应助raincoats采纳,获得15
27秒前
打打应助科研探索者采纳,获得10
27秒前
小墨墨发布了新的文献求助30
27秒前
落后的盼秋完成签到,获得积分10
28秒前
大方元风完成签到 ,获得积分10
29秒前
听风完成签到,获得积分20
30秒前
科研鸟发布了新的文献求助10
32秒前
34秒前
情怀应助落寞银耳汤采纳,获得10
34秒前
XXXXX完成签到,获得积分10
34秒前
FrozNineTivus完成签到,获得积分10
37秒前
听风发布了新的文献求助10
37秒前
CipherSage应助念姬采纳,获得10
41秒前
腼腆的梦蕊完成签到 ,获得积分10
41秒前
Neuro_dan完成签到,获得积分0
41秒前
pluto应助熊猫文文采纳,获得10
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159852
捐赠科研通 3246372
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388