清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Smart Predict-then-Optimize method for dynamic green bike relocation in the free-floating system

重新安置 TRIPS体系结构 共享单车 运输工程 计算机科学 地铁列车时刻表 运筹学 模拟 工程类 操作系统 程序设计语言
作者
Ximing Chang,Jianjun Wu,Huijun Sun,Xuedong Yan
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:153: 104220-104220 被引量:2
标识
DOI:10.1016/j.trc.2023.104220
摘要

Cities are facing numerous challenges such as road traffic congestion and environmental pollution. Bike-sharing, as an emission-free travel mode, aligns with the principle of green and environmental protection and serves mainly for short-distance trips in urban areas. Shared bikes pose significant issues to operators due to supply–demand imbalances across different time and space. This study proposes a Smart Predict-then-Optimize method for dynamic green bike relocation in the free-floating system, which aims to minimize the cost of fuel and carbon emissions from repositioning vehicles and the total unmet demand during the operating period. A multi-task deep neural network model is designed to predict regional inflow and outflow demand, where targeted modules are embedded to extract the spatio-temporal characteristics. Potential unusable shared bikes are discovered from the users’ travel behavior and the usage characteristics of shared bikes. Then, we build a data-driven optimization model for bike-sharing relocation and design an iterative decomposition algorithm that incorporates an adaptive large neighborhood search for relocation routes and vehicle speed optimization. The proposed method is tested on real-world bike-sharing trips in Shenzhen, China, and results show that the relocation distance and carbon emission cost can be reduced by 11.69% and 14.09% by relocating operational bikes and unusable bikes simultaneously. Additionally, route decision-making with speed optimization can decrease the total fuel and emission, where considering the collection of unusable bikes help improve the service level of the system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
浑续发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
10秒前
LINDENG2004完成签到 ,获得积分10
12秒前
1分钟前
Eileen完成签到 ,获得积分0
1分钟前
zzhui完成签到,获得积分10
1分钟前
P_Chem完成签到,获得积分10
1分钟前
浑续完成签到,获得积分10
1分钟前
2分钟前
2分钟前
Jessica发布了新的文献求助10
2分钟前
2分钟前
方白秋完成签到,获得积分0
3分钟前
迷茫的一代完成签到,获得积分10
3分钟前
crazy发布了新的文献求助10
3分钟前
3分钟前
狂野的含烟完成签到 ,获得积分10
3分钟前
3分钟前
yiburongci完成签到,获得积分20
3分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
Lei完成签到,获得积分10
4分钟前
4分钟前
唐唐完成签到,获得积分10
4分钟前
5分钟前
WaWaQAQ发布了新的文献求助10
5分钟前
yiburongci关注了科研通微信公众号
5分钟前
WaWaQAQ完成签到,获得积分10
5分钟前
yiburongci发布了新的文献求助25
5分钟前
Gryff完成签到 ,获得积分10
6分钟前
萝卜猪完成签到,获得积分10
6分钟前
6分钟前
6分钟前
欢呼亦绿完成签到,获得积分10
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
Jessica应助精明代灵采纳,获得10
6分钟前
大个应助安静的小蘑菇采纳,获得30
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664535
求助须知:如何正确求助?哪些是违规求助? 4864753
关于积分的说明 15107992
捐赠科研通 4823177
什么是DOI,文献DOI怎么找? 2582040
邀请新用户注册赠送积分活动 1536144
关于科研通互助平台的介绍 1494545