亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Smart Predict-then-Optimize method for dynamic green bike relocation in the free-floating system

重新安置 TRIPS体系结构 共享单车 运输工程 计算机科学 地铁列车时刻表 运筹学 模拟 工程类 操作系统 程序设计语言
作者
Ximing Chang,Jianjun Wu,Huijun Sun,Xuedong Yan
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:153: 104220-104220 被引量:2
标识
DOI:10.1016/j.trc.2023.104220
摘要

Cities are facing numerous challenges such as road traffic congestion and environmental pollution. Bike-sharing, as an emission-free travel mode, aligns with the principle of green and environmental protection and serves mainly for short-distance trips in urban areas. Shared bikes pose significant issues to operators due to supply–demand imbalances across different time and space. This study proposes a Smart Predict-then-Optimize method for dynamic green bike relocation in the free-floating system, which aims to minimize the cost of fuel and carbon emissions from repositioning vehicles and the total unmet demand during the operating period. A multi-task deep neural network model is designed to predict regional inflow and outflow demand, where targeted modules are embedded to extract the spatio-temporal characteristics. Potential unusable shared bikes are discovered from the users’ travel behavior and the usage characteristics of shared bikes. Then, we build a data-driven optimization model for bike-sharing relocation and design an iterative decomposition algorithm that incorporates an adaptive large neighborhood search for relocation routes and vehicle speed optimization. The proposed method is tested on real-world bike-sharing trips in Shenzhen, China, and results show that the relocation distance and carbon emission cost can be reduced by 11.69% and 14.09% by relocating operational bikes and unusable bikes simultaneously. Additionally, route decision-making with speed optimization can decrease the total fuel and emission, where considering the collection of unusable bikes help improve the service level of the system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Demon724完成签到,获得积分10
7秒前
htc1996完成签到,获得积分10
10秒前
lin完成签到 ,获得积分10
16秒前
牛油果完成签到,获得积分10
20秒前
32秒前
33秒前
TJ发布了新的文献求助10
39秒前
kekeke777完成签到 ,获得积分10
39秒前
TEMPO发布了新的文献求助10
39秒前
oleskarabach发布了新的文献求助10
39秒前
41秒前
Ru完成签到 ,获得积分10
45秒前
TEMPO完成签到,获得积分10
46秒前
充电宝应助科研通管家采纳,获得10
47秒前
归去来兮应助科研通管家采纳,获得10
47秒前
CipherSage应助科研通管家采纳,获得10
47秒前
维奈克拉应助科研通管家采纳,获得20
47秒前
47秒前
52秒前
54秒前
1分钟前
George完成签到,获得积分10
1分钟前
陈文学完成签到,获得积分10
1分钟前
1分钟前
情红锐完成签到,获得积分10
1分钟前
陈文学发布了新的文献求助10
1分钟前
1分钟前
今后应助情红锐采纳,获得10
1分钟前
大恐龙的噗噗完成签到,获得积分10
1分钟前
Sunziy完成签到,获得积分10
1分钟前
oleskarabach发布了新的文献求助10
1分钟前
1分钟前
1分钟前
cy完成签到 ,获得积分10
1分钟前
2分钟前
肉肉完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
meimei完成签到 ,获得积分0
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639533
求助须知:如何正确求助?哪些是违规求助? 4748853
关于积分的说明 15006598
捐赠科研通 4797713
什么是DOI,文献DOI怎么找? 2563735
邀请新用户注册赠送积分活动 1522691
关于科研通互助平台的介绍 1482394