A Smart Predict-then-Optimize method for dynamic green bike relocation in the free-floating system

重新安置 TRIPS体系结构 共享单车 运输工程 计算机科学 地铁列车时刻表 运筹学 模拟 工程类 操作系统 程序设计语言
作者
Ximing Chang,Jianjun Wu,Huijun Sun,Xuedong Yan
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:153: 104220-104220 被引量:2
标识
DOI:10.1016/j.trc.2023.104220
摘要

Cities are facing numerous challenges such as road traffic congestion and environmental pollution. Bike-sharing, as an emission-free travel mode, aligns with the principle of green and environmental protection and serves mainly for short-distance trips in urban areas. Shared bikes pose significant issues to operators due to supply–demand imbalances across different time and space. This study proposes a Smart Predict-then-Optimize method for dynamic green bike relocation in the free-floating system, which aims to minimize the cost of fuel and carbon emissions from repositioning vehicles and the total unmet demand during the operating period. A multi-task deep neural network model is designed to predict regional inflow and outflow demand, where targeted modules are embedded to extract the spatio-temporal characteristics. Potential unusable shared bikes are discovered from the users’ travel behavior and the usage characteristics of shared bikes. Then, we build a data-driven optimization model for bike-sharing relocation and design an iterative decomposition algorithm that incorporates an adaptive large neighborhood search for relocation routes and vehicle speed optimization. The proposed method is tested on real-world bike-sharing trips in Shenzhen, China, and results show that the relocation distance and carbon emission cost can be reduced by 11.69% and 14.09% by relocating operational bikes and unusable bikes simultaneously. Additionally, route decision-making with speed optimization can decrease the total fuel and emission, where considering the collection of unusable bikes help improve the service level of the system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
2秒前
量子星尘发布了新的文献求助10
4秒前
kkjust完成签到,获得积分10
4秒前
ChatGPT发布了新的文献求助10
6秒前
斯文的思菱完成签到,获得积分10
9秒前
然大宝发布了新的文献求助10
9秒前
swordshine完成签到,获得积分0
10秒前
10秒前
Swait完成签到,获得积分10
14秒前
闻巷雨完成签到 ,获得积分10
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
木木杨完成签到,获得积分10
21秒前
雪糕发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
22秒前
al完成签到 ,获得积分0
27秒前
27秒前
量子星尘发布了新的文献求助10
27秒前
31秒前
dldldl完成签到,获得积分10
34秒前
Gary发布了新的文献求助30
37秒前
方方完成签到 ,获得积分10
38秒前
量子星尘发布了新的文献求助10
39秒前
滴滴完成签到 ,获得积分10
40秒前
小亮哈哈完成签到,获得积分0
40秒前
Research完成签到 ,获得积分10
42秒前
adamchase完成签到,获得积分10
45秒前
ChatGPT发布了新的文献求助10
45秒前
i2stay完成签到,获得积分0
46秒前
圣晟胜完成签到,获得积分10
52秒前
53秒前
CGFHEMAN完成签到 ,获得积分10
55秒前
yutingemail完成签到 ,获得积分10
55秒前
止戈为武完成签到,获得积分10
56秒前
Jeffery426完成签到,获得积分10
1分钟前
yx完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
执着的导师完成签到,获得积分0
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671546
求助须知:如何正确求助?哪些是违规求助? 4919419
关于积分的说明 15134948
捐赠科研通 4830339
什么是DOI,文献DOI怎么找? 2587027
邀请新用户注册赠送积分活动 1540660
关于科研通互助平台的介绍 1498936