A Smart Predict-then-Optimize method for dynamic green bike relocation in the free-floating system

重新安置 TRIPS体系结构 共享单车 运输工程 计算机科学 地铁列车时刻表 运筹学 模拟 工程类 操作系统 程序设计语言
作者
Ximing Chang,Jianjun Wu,Huijun Sun,Xuedong Yan
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:153: 104220-104220 被引量:2
标识
DOI:10.1016/j.trc.2023.104220
摘要

Cities are facing numerous challenges such as road traffic congestion and environmental pollution. Bike-sharing, as an emission-free travel mode, aligns with the principle of green and environmental protection and serves mainly for short-distance trips in urban areas. Shared bikes pose significant issues to operators due to supply–demand imbalances across different time and space. This study proposes a Smart Predict-then-Optimize method for dynamic green bike relocation in the free-floating system, which aims to minimize the cost of fuel and carbon emissions from repositioning vehicles and the total unmet demand during the operating period. A multi-task deep neural network model is designed to predict regional inflow and outflow demand, where targeted modules are embedded to extract the spatio-temporal characteristics. Potential unusable shared bikes are discovered from the users’ travel behavior and the usage characteristics of shared bikes. Then, we build a data-driven optimization model for bike-sharing relocation and design an iterative decomposition algorithm that incorporates an adaptive large neighborhood search for relocation routes and vehicle speed optimization. The proposed method is tested on real-world bike-sharing trips in Shenzhen, China, and results show that the relocation distance and carbon emission cost can be reduced by 11.69% and 14.09% by relocating operational bikes and unusable bikes simultaneously. Additionally, route decision-making with speed optimization can decrease the total fuel and emission, where considering the collection of unusable bikes help improve the service level of the system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鲨鱼完成签到,获得积分10
1秒前
程小柒完成签到 ,获得积分10
3秒前
加速度完成签到 ,获得积分10
4秒前
5秒前
这个名字就比原来的好听完成签到,获得积分10
7秒前
董冬冬完成签到 ,获得积分10
9秒前
深情安青应助坦率的寻双采纳,获得10
9秒前
Jasper应助muttcy采纳,获得30
10秒前
11秒前
李海妍完成签到 ,获得积分10
11秒前
赵亚南完成签到,获得积分10
11秒前
XIAO完成签到,获得积分10
12秒前
Carolsrabbit完成签到,获得积分10
12秒前
Franny完成签到 ,获得积分10
13秒前
踏水追风完成签到,获得积分10
14秒前
fancy完成签到 ,获得积分10
14秒前
大地完成签到,获得积分10
15秒前
16秒前
LDDD完成签到,获得积分10
17秒前
18秒前
红叶完成签到,获得积分10
18秒前
上下完成签到 ,获得积分10
20秒前
20秒前
半缘修道半缘君完成签到 ,获得积分10
21秒前
欣喜的白风完成签到,获得积分10
22秒前
wangsai完成签到,获得积分10
22秒前
25秒前
25秒前
27秒前
27秒前
qiuer0011完成签到,获得积分10
29秒前
浪费青春传奇完成签到,获得积分10
29秒前
Marksman497完成签到,获得积分10
30秒前
owlhealth发布了新的文献求助10
32秒前
Marksman497发布了新的文献求助30
33秒前
lily完成签到,获得积分10
34秒前
不安海蓝完成签到,获得积分10
35秒前
dong完成签到 ,获得积分10
36秒前
36秒前
三石完成签到,获得积分10
36秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261705
求助须知:如何正确求助?哪些是违规求助? 2902540
关于积分的说明 8319880
捐赠科研通 2572345
什么是DOI,文献DOI怎么找? 1397564
科研通“疑难数据库(出版商)”最低求助积分说明 653851
邀请新用户注册赠送积分活动 632305