亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Smart Predict-then-Optimize method for dynamic green bike relocation in the free-floating system

重新安置 TRIPS体系结构 共享单车 运输工程 计算机科学 地铁列车时刻表 运筹学 模拟 工程类 操作系统 程序设计语言
作者
Ximing Chang,Jianjun Wu,Huijun Sun,Xuedong Yan
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:153: 104220-104220 被引量:2
标识
DOI:10.1016/j.trc.2023.104220
摘要

Cities are facing numerous challenges such as road traffic congestion and environmental pollution. Bike-sharing, as an emission-free travel mode, aligns with the principle of green and environmental protection and serves mainly for short-distance trips in urban areas. Shared bikes pose significant issues to operators due to supply–demand imbalances across different time and space. This study proposes a Smart Predict-then-Optimize method for dynamic green bike relocation in the free-floating system, which aims to minimize the cost of fuel and carbon emissions from repositioning vehicles and the total unmet demand during the operating period. A multi-task deep neural network model is designed to predict regional inflow and outflow demand, where targeted modules are embedded to extract the spatio-temporal characteristics. Potential unusable shared bikes are discovered from the users’ travel behavior and the usage characteristics of shared bikes. Then, we build a data-driven optimization model for bike-sharing relocation and design an iterative decomposition algorithm that incorporates an adaptive large neighborhood search for relocation routes and vehicle speed optimization. The proposed method is tested on real-world bike-sharing trips in Shenzhen, China, and results show that the relocation distance and carbon emission cost can be reduced by 11.69% and 14.09% by relocating operational bikes and unusable bikes simultaneously. Additionally, route decision-making with speed optimization can decrease the total fuel and emission, where considering the collection of unusable bikes help improve the service level of the system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qqqq发布了新的文献求助10
4秒前
rengar完成签到,获得积分10
6秒前
丸子完成签到 ,获得积分10
6秒前
10秒前
湘崽丫完成签到 ,获得积分10
11秒前
yangzai完成签到 ,获得积分0
12秒前
12秒前
Jasper应助科研通管家采纳,获得10
13秒前
BowieHuang应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
BowieHuang应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
13秒前
16秒前
MMY完成签到,获得积分10
18秒前
坚强的秋白完成签到,获得积分10
19秒前
suge完成签到 ,获得积分10
19秒前
传奇3应助qqqq采纳,获得10
19秒前
MiRoRo完成签到 ,获得积分10
49秒前
49秒前
50秒前
Mercy发布了新的文献求助10
54秒前
chongqi发布了新的文献求助10
54秒前
Li完成签到,获得积分10
57秒前
chongqi完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
Mercy完成签到,获得积分10
1分钟前
顺顺科研完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
黄sir完成签到 ,获得积分10
1分钟前
王火火完成签到 ,获得积分10
1分钟前
梦玲完成签到 ,获得积分10
1分钟前
shain完成签到,获得积分10
2分钟前
思源应助科研通管家采纳,获得10
2分钟前
李爱国应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590407
求助须知:如何正确求助?哪些是违规求助? 4674712
关于积分的说明 14795170
捐赠科研通 4631521
什么是DOI,文献DOI怎么找? 2532696
邀请新用户注册赠送积分活动 1501268
关于科研通互助平台的介绍 1468617