Classification of Imbalanced Data Using SMOTE and AutoEncoder Based Deep Convolutional Neural Network

人工智能 计算机科学 自编码 过采样 卷积神经网络 深度学习 模式识别(心理学) 机器学习 预处理器 数据预处理 数据集 分类器(UML) 数据挖掘 带宽(计算) 计算机网络
作者
Suja A. Alex,J. Jesu Vedha Nayahi
出处
期刊:International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems [World Scientific]
卷期号:31 (03): 437-469 被引量:7
标识
DOI:10.1142/s0218488523500228
摘要

The imbalanced data classification is a challenging issue in many domains including medical intelligent diagnosis and fraudulent transaction analysis. The performance of the conventional classifier degrades due to the imbalanced class distribution of the training data set. Recently, machine learning and deep learning techniques are used for imbalanced data classification. Data preprocessing approaches are also suitable for handling class imbalance problem. Data augmentation is one of the preprocessing techniques used to handle skewed class distribution. Synthetic Minority Oversampling Technique (SMOTE) is a promising class balancing approach and it generates noise during the process of creation of synthetic samples. In this paper, AutoEncoder is used as a noise reduction technique and it reduces the noise generated by SMOTE. Further, Deep one-dimensional Convolutional Neural Network is used for classification. The performance of the proposed method is evaluated and compared with existing approaches using different metrics such as Precision, Recall, Accuracy, Area Under the Curve and Geometric Mean. Ten data sets with imbalance ratio ranging from 1.17 to 577.87 and data set size ranging from 303 to 284807 instances are used in the experiments. The different imbalanced data sets used are Heart-Disease, Mammography, Pima Indian diabetes, Adult, Oil-Spill, Phoneme, Creditcard, BankNoteAuthentication, Balance scale weight & distance database and Yeast data sets. The proposed method shows an accuracy of 96.1%, 96.5%, 87.7%, 87.3%, 95%, 92.4%, 98.4%, 86.1%, 94% and 95.9% respectively. The results suggest that this method outperforms other deep learning methods and machine learning methods with respect to G-mean and other performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘络发布了新的文献求助10
刚刚
mokmok发布了新的文献求助10
1秒前
1秒前
小小发布了新的文献求助30
2秒前
3秒前
积极搞学术-503完成签到,获得积分10
3秒前
自然完成签到,获得积分10
4秒前
搜集达人应助水123采纳,获得10
4秒前
脑洞疼应助阳光怀亦采纳,获得10
5秒前
迪迦发布了新的文献求助10
8秒前
8秒前
8秒前
科研通AI2S应助大佬采纳,获得10
8秒前
酷波er应助文静三颜采纳,获得10
9秒前
tczw667完成签到,获得积分10
9秒前
善学以致用应助小喻采纳,获得10
9秒前
12秒前
nicezhutou完成签到 ,获得积分10
13秒前
科目三应助橘络采纳,获得10
13秒前
14秒前
Earuan发布了新的文献求助10
14秒前
丁叮发布了新的文献求助10
14秒前
zhang发布了新的文献求助20
16秒前
jonghuang发布了新的文献求助10
17秒前
香蕉觅云应助JDQW采纳,获得10
17秒前
野性的柠檬完成签到,获得积分20
17秒前
qqqq完成签到,获得积分10
18秒前
18秒前
英俊的馒头完成签到,获得积分10
20秒前
qqqq发布了新的文献求助10
20秒前
22秒前
烟花应助懒得起名采纳,获得10
24秒前
Mea关闭了Mea文献求助
24秒前
jonghuang完成签到,获得积分10
25秒前
zzm发布了新的文献求助10
25秒前
28秒前
Rencal完成签到 ,获得积分10
29秒前
30秒前
33秒前
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459066
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037605
捐赠科研通 2742924
什么是DOI,文献DOI怎么找? 1504562
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589