Building Multimodal Knowledge Bases With Multimodal Computational Sequences and Generative Adversarial Networks

计算机科学 对抗制 生成语法 人工智能 理论计算机科学 人机交互 机器学习
作者
Donghua Chen,Runtong Zhang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 2027-2040 被引量:10
标识
DOI:10.1109/tmm.2023.3291503
摘要

Conventional knowledge graphs (KGs) are composed solely of entities, attributes, and relationships, which poses challenges for enhancing multimodal knowledge representation and reasoning. To address the issue, this article proposes a multimodal deep learning-based approach to build a multimodal knowledge base (MMKB) for better multimodal feature (MMF) utilization. First, we construct a multimodal computation sequence (MCS) model for structured multimodal data storage. Then, we propose multimodal node, relationship, and dictionary models to enhance multimodal knowledge representation. Various feature extractors are used to extract MMFs from text, audio, image, and video data. Finally, we leverage generative adversarial networks (GANs) to facilitate MMF representation and update the MMKB dynamically. We examine the performance of the proposed method by using three multimodal datasets. BOW-, LBP-, Volume-, and VGGish-based feature extractors outperform the other methods by reducing at least 1.13%, 22.14%, 39.87, and 5.65% of the time cost, respectively. The average time costs of creating multimodal indexes improve by approximately 55.07% and 68.60% exact matching rates compared with the baseline method, respectively. The deep learning-based autoencoder method reduces the search time cost by 98.90% after using the trained model, outperforming the state-of-the-art methods. In terms of multimodal data representation, the GAN-CNN models achieve an average correct rate of 82.70%. Our open-source work highlights the importance of flexible MMF utilization in multimodal KGs, leading to more powerful and diverse applications that can leverage different types of data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ffffffff完成签到,获得积分10
刚刚
1秒前
2秒前
梦桃发布了新的文献求助10
2秒前
2秒前
威武从霜发布了新的文献求助10
3秒前
shao应助宇文沛岚采纳,获得20
3秒前
量子星尘发布了新的文献求助10
4秒前
echo发布了新的文献求助10
4秒前
掌灯师发布了新的文献求助150
4秒前
4秒前
打打应助ysw采纳,获得10
4秒前
xzx发布了新的文献求助10
5秒前
5秒前
学术蟑螂完成签到,获得积分10
6秒前
qinqiny完成签到 ,获得积分10
6秒前
华仔应助猪猪侠采纳,获得10
7秒前
小蘑菇应助姐姐采纳,获得10
7秒前
8秒前
8秒前
PJ完成签到,获得积分10
9秒前
9秒前
可爱的函函应助echo采纳,获得10
10秒前
果汁豆浆完成签到,获得积分10
10秒前
科研通AI2S应助dream采纳,获得10
10秒前
在水一方应助hkh采纳,获得10
11秒前
11秒前
小郭发布了新的文献求助10
11秒前
博修发布了新的文献求助10
11秒前
12秒前
今后应助白衣轻叹采纳,获得10
12秒前
孟孟完成签到,获得积分10
12秒前
12秒前
13秒前
juanwu发布了新的文献求助10
13秒前
3080642743发布了新的文献求助10
13秒前
可爱的函函应助梦桃采纳,获得10
13秒前
14秒前
doge完成签到,获得积分20
14秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497645
关于积分的说明 11088172
捐赠科研通 3228209
什么是DOI,文献DOI怎么找? 1784718
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801281