Building Multimodal Knowledge Bases With Multimodal Computational Sequences and Generative Adversarial Networks

计算机科学 对抗制 生成语法 人工智能 理论计算机科学 人机交互 机器学习
作者
Donghua Chen,Runtong Zhang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 2027-2040 被引量:8
标识
DOI:10.1109/tmm.2023.3291503
摘要

Conventional knowledge graphs (KGs) are composed solely of entities, attributes, and relationships, which poses challenges for enhancing multimodal knowledge representation and reasoning. To address the issue, this article proposes a multimodal deep learning-based approach to build a multimodal knowledge base (MMKB) for better multimodal feature (MMF) utilization. First, we construct a multimodal computation sequence (MCS) model for structured multimodal data storage. Then, we propose multimodal node, relationship, and dictionary models to enhance multimodal knowledge representation. Various feature extractors are used to extract MMFs from text, audio, image, and video data. Finally, we leverage generative adversarial networks (GANs) to facilitate MMF representation and update the MMKB dynamically. We examine the performance of the proposed method by using three multimodal datasets. BOW-, LBP-, Volume-, and VGGish-based feature extractors outperform the other methods by reducing at least 1.13%, 22.14%, 39.87, and 5.65% of the time cost, respectively. The average time costs of creating multimodal indexes improve by approximately 55.07% and 68.60% exact matching rates compared with the baseline method, respectively. The deep learning-based autoencoder method reduces the search time cost by 98.90% after using the trained model, outperforming the state-of-the-art methods. In terms of multimodal data representation, the GAN-CNN models achieve an average correct rate of 82.70%. Our open-source work highlights the importance of flexible MMF utilization in multimodal KGs, leading to more powerful and diverse applications that can leverage different types of data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿卫完成签到,获得积分10
2秒前
飞飞完成签到,获得积分10
2秒前
4秒前
静谧180完成签到 ,获得积分10
5秒前
Geodada发布了新的文献求助10
6秒前
一步发布了新的文献求助10
8秒前
等待的花卷完成签到,获得积分10
8秒前
wang完成签到 ,获得积分10
9秒前
13秒前
树下的枫凉完成签到,获得积分10
15秒前
wanci应助Geodada采纳,获得10
15秒前
mawanyu发布了新的文献求助10
16秒前
乐666完成签到,获得积分10
17秒前
20秒前
徐福上完成签到 ,获得积分10
21秒前
慕青应助一步采纳,获得10
21秒前
21秒前
22秒前
丰富新儿完成签到,获得积分10
23秒前
Sky完成签到,获得积分10
24秒前
善学以致用应助rainsy采纳,获得10
24秒前
yu完成签到,获得积分10
25秒前
黄同学完成签到,获得积分10
25秒前
大方百招完成签到,获得积分10
25秒前
25秒前
盛夏完成签到,获得积分10
25秒前
土木研学僧完成签到,获得积分10
25秒前
iiianchen发布了新的文献求助10
26秒前
26秒前
kkpp完成签到 ,获得积分10
27秒前
下一块蛋糕完成签到 ,获得积分10
28秒前
可ke完成签到 ,获得积分10
30秒前
31秒前
Lan完成签到 ,获得积分10
31秒前
32秒前
32秒前
Lorain完成签到,获得积分10
33秒前
luqianling完成签到 ,获得积分10
33秒前
33秒前
34秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464176
求助须知:如何正确求助?哪些是违规求助? 3057496
关于积分的说明 9057440
捐赠科研通 2747573
什么是DOI,文献DOI怎么找? 1507413
科研通“疑难数据库(出版商)”最低求助积分说明 696553
邀请新用户注册赠送积分活动 696068