Green consumption behavior prediction based on fan-shaped search mechanism fruit fly algorithm optimized neural network

极限学习机 计算机科学 一般化 趋同(经济学) 算法 人工神经网络 消费(社会学) 人工智能 遗传算法 机器学习 数学优化 数学 社会科学 经济增长 数学分析 社会学 经济
作者
Bo Li,Mengjie Liao,Junjing Yuan,Jian Zhang
出处
期刊:Journal of Retailing and Consumer Services [Elsevier]
卷期号:75: 103471-103471 被引量:4
标识
DOI:10.1016/j.jretconser.2023.103471
摘要

Predicting consumption behavior is very important for adjusting supplier production plans and enterprise marketing activities. Conventional statistical methods are unable to accurately predict green consumption behavior because it is characterized by multivariate nonlinear interactions. The paper proposes an optimized fruit fly algorithm (FOA) and extreme learning machine (ELM) model for consumption behavior prediction. First, to address the problem of uneven search direction of FOA leading to insufficient search ability and low efficiency, the paper proposes a sector search mechanism instead of a random search mechanism to improve the global search ability and convergence speed of FOA. Second, to address the issue that the initial weights and hidden layer bias values of the ELM are randomly generated, which affects the learning efficiency and generalization of the ELM, the paper uses an improved FOA to optimize the weights and bias values of ELM for improving the prediction accuracy. Taking the green vegetable consumption behavior of Beijing residents as an example, the results show the optimization of the initial weight and threshold of ELM by the GA, PSO, FOA, and SFOA, the prediction accuracy of the GA-ELM, PSO-ELM, FOA-ELM, and SFOA-ELM models all surpass those of ELM. Compared with BPNN, GRNN, ELM, GA-ELM, PSO-ELM, and FOA-ELM models, the RMSE value of SFOA-ELM was decreased by 9.45%, 8.40%, 11.89%, 5.84%, 2.22%, and 2.69%, respectively. These findings demonstrate the effectiveness of the SFOA-ELM model in green consumption behavior prediction and provide new ideas for the accurate prediction of consumption behaviors of other green products with similar characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jovrtic发布了新的文献求助10
刚刚
2秒前
毛头侠发布了新的文献求助10
2秒前
陶一淘完成签到 ,获得积分20
3秒前
Cloud发布了新的文献求助100
3秒前
小铃铛发布了新的文献求助20
3秒前
5秒前
5秒前
6秒前
6秒前
无花果应助端庄书雁采纳,获得10
7秒前
8秒前
li7er发布了新的文献求助10
8秒前
9秒前
JxJ发布了新的文献求助10
9秒前
等待的雪碧完成签到,获得积分10
9秒前
儒雅慕灵发布了新的文献求助10
10秒前
11秒前
14秒前
14秒前
二号发布了新的文献求助10
15秒前
Lucas应助毒绿帽采纳,获得10
15秒前
苹果树完成签到,获得积分10
16秒前
DH完成签到 ,获得积分10
16秒前
17秒前
17秒前
17秒前
李想完成签到,获得积分10
18秒前
18秒前
flowey发布了新的文献求助10
19秒前
qiqi77发布了新的文献求助20
20秒前
20秒前
20秒前
20秒前
逸晨发布了新的文献求助10
21秒前
三哥哥w发布了新的文献求助10
21秒前
加菲丰丰应助追寻天亦采纳,获得20
21秒前
狒狒爱学习完成签到,获得积分10
22秒前
在水一方应助傻芙芙的采纳,获得10
22秒前
英姑应助科研通管家采纳,获得10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146046
求助须知:如何正确求助?哪些是违规求助? 2797450
关于积分的说明 7824222
捐赠科研通 2453810
什么是DOI,文献DOI怎么找? 1305876
科研通“疑难数据库(出版商)”最低求助积分说明 627593
版权声明 601491