Green consumption behavior prediction based on fan-shaped search mechanism fruit fly algorithm optimized neural network

极限学习机 计算机科学 一般化 趋同(经济学) 算法 人工神经网络 消费(社会学) 人工智能 遗传算法 机器学习 数学优化 数学 数学分析 社会科学 社会学 经济 经济增长
作者
Bo Li,Mengjie Liao,Junjing Yuan,Jian Zhang
出处
期刊:Journal of Retailing and Consumer Services [Elsevier BV]
卷期号:75: 103471-103471 被引量:7
标识
DOI:10.1016/j.jretconser.2023.103471
摘要

Predicting consumption behavior is very important for adjusting supplier production plans and enterprise marketing activities. Conventional statistical methods are unable to accurately predict green consumption behavior because it is characterized by multivariate nonlinear interactions. The paper proposes an optimized fruit fly algorithm (FOA) and extreme learning machine (ELM) model for consumption behavior prediction. First, to address the problem of uneven search direction of FOA leading to insufficient search ability and low efficiency, the paper proposes a sector search mechanism instead of a random search mechanism to improve the global search ability and convergence speed of FOA. Second, to address the issue that the initial weights and hidden layer bias values of the ELM are randomly generated, which affects the learning efficiency and generalization of the ELM, the paper uses an improved FOA to optimize the weights and bias values of ELM for improving the prediction accuracy. Taking the green vegetable consumption behavior of Beijing residents as an example, the results show the optimization of the initial weight and threshold of ELM by the GA, PSO, FOA, and SFOA, the prediction accuracy of the GA-ELM, PSO-ELM, FOA-ELM, and SFOA-ELM models all surpass those of ELM. Compared with BPNN, GRNN, ELM, GA-ELM, PSO-ELM, and FOA-ELM models, the RMSE value of SFOA-ELM was decreased by 9.45%, 8.40%, 11.89%, 5.84%, 2.22%, and 2.69%, respectively. These findings demonstrate the effectiveness of the SFOA-ELM model in green consumption behavior prediction and provide new ideas for the accurate prediction of consumption behaviors of other green products with similar characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
重要墨镜完成签到,获得积分10
刚刚
慕青应助Lance采纳,获得10
3秒前
英俊的铭应助秀莉采纳,获得10
3秒前
Sirila发布了新的文献求助10
5秒前
6秒前
田様应助WTTTTTFFFFFF采纳,获得10
6秒前
7秒前
爆米花应助沧笙踏歌采纳,获得10
7秒前
花畦种豆完成签到,获得积分10
8秒前
哆啦B梦完成签到,获得积分10
8秒前
顾矜应助曾经的臻采纳,获得10
9秒前
10秒前
沉默羔羊完成签到,获得积分10
10秒前
斯文败类应助发嗲的怜珊采纳,获得30
10秒前
共享精神应助11采纳,获得10
12秒前
mmj发布了新的文献求助10
12秒前
Hello应助超帅沂采纳,获得10
13秒前
15秒前
吃糖完成签到 ,获得积分10
15秒前
LHW发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
杜青完成签到,获得积分10
16秒前
秀莉发布了新的文献求助10
18秒前
充电宝应助瘦瘦的赛凤采纳,获得10
19秒前
19秒前
曾经的臻发布了新的文献求助10
20秒前
尤川发布了新的文献求助10
20秒前
23lk发布了新的文献求助10
21秒前
Sirila完成签到,获得积分10
21秒前
星辰大海应助smengxxx采纳,获得10
22秒前
大方乌龟完成签到 ,获得积分10
24秒前
25秒前
斯文败类应助殷勤的秋荷采纳,获得10
26秒前
搞怪莫茗应助midokaori采纳,获得10
26秒前
dan完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
26秒前
逍遥完成签到,获得积分10
27秒前
在水一方应助曾经的臻采纳,获得10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956566
求助须知:如何正确求助?哪些是违规求助? 3502673
关于积分的说明 11109597
捐赠科研通 3233488
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870674
科研通“疑难数据库(出版商)”最低求助积分说明 802143