Hybrid machine learning models for prediction of daily dissolved oxygen

水准点(测量) 人工神经网络 平均绝对百分比误差 平均绝对误差 灵敏度(控制系统) 计算机科学 人口 机器学习 人工智能 近似误差 均方预测误差 均方误差 统计 预测建模 数学 工程类 地质学 社会学 人口学 电子工程 大地测量学
作者
Aliasghar Azma,Yakun Liu,Masoumeh Azma,Mohsen Saadat,Di Zhang,Jinwoo Cho,Shahabaldin Rezania
出处
期刊:Journal of water process engineering [Elsevier]
卷期号:54: 103957-103957 被引量:8
标识
DOI:10.1016/j.jwpe.2023.103957
摘要

Measuring water quality parameters is a significant step in many hydrological assessments. Dissolved oxygen (DO) is one of these parameters that is an indicator of water quality. Hence, this study offers two novel intelligent models, i.e., the integration of biogeography-based optimization (BBO) and atom search optimization (ASO) with artificial neural network (ANN), to predict the daily DO. These methods are comparatively assessed and validated against several benchmark techniques. Five-year (2014–2019) water quality data of a USGS station called Rock Creek (Station number 01648010) is used for implementing the proposed model. In this sense, the models first learn the DO behavior using 80 % of the data and they then predict the DO for the fifth year. As per the performed sensitivity analysis, the water temperature was selected as the most effective parameter in the DO prediction. Trying different population sizes determined an optimal configuration of the employed models and assessing the accuracy of the results revealed that the proposed models can nicely perceive the DO pattern with around 4 % mean absolute percentage error (MAPE) and 97.5 % correlation. In the testing phase, the BBO-ANN and ASO-ANN models predicted the DO of the fifth year with MAPEs 2.3848 and 2.5170 %, and correlations of 0.99186 and 0.99135, respectively. Moreover, the suggested BBO-ANN and ASO-ANN outperformed some similar hybrids from the existing literature. Lastly, an explicit formula is derived from the BBO-ANN for convenient prediction of the DO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hey关闭了Hey文献求助
刚刚
学渣向下完成签到,获得积分10
刚刚
咚咚咚发布了新的文献求助10
刚刚
1秒前
willen完成签到,获得积分10
1秒前
1秒前
奇怪的柒完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
文静的枫叶完成签到,获得积分10
3秒前
科目三应助神麒小雪采纳,获得10
3秒前
zzznznnn发布了新的文献求助10
4秒前
pbf发布了新的文献求助20
4秒前
科研通AI5应助有风采纳,获得10
5秒前
Lin完成签到,获得积分10
5秒前
科研通AI5应助肉松小贝采纳,获得10
6秒前
粉色完成签到,获得积分10
6秒前
Ll发布了新的文献求助10
6秒前
6秒前
愉快彩虹发布了新的文献求助10
7秒前
CTL完成签到,获得积分10
7秒前
7秒前
共享精神应助加减乘除采纳,获得10
7秒前
7秒前
恬恬完成签到,获得积分10
7秒前
8秒前
22发布了新的文献求助10
8秒前
aacc956发布了新的文献求助10
8秒前
8秒前
谨慎涵柏完成签到,获得积分10
9秒前
快乐的如风完成签到,获得积分10
10秒前
11秒前
吃猫的鱼完成签到,获得积分10
11秒前
脑洞疼应助润润轩轩采纳,获得10
12秒前
刘文静完成签到,获得积分10
13秒前
Southluuu发布了新的文献求助10
13秒前
chenjyuu发布了新的文献求助10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759