Hybrid machine learning models for prediction of daily dissolved oxygen

水准点(测量) 人工神经网络 平均绝对百分比误差 平均绝对误差 灵敏度(控制系统) 计算机科学 人口 机器学习 人工智能 近似误差 均方预测误差 均方误差 统计 预测建模 数学 工程类 地质学 社会学 人口学 电子工程 大地测量学
作者
Aliasghar Azma,Yakun Liu,Masoumeh Azma,Mohsen Saadat,Di Zhang,Jinwoo Cho,Shahabaldin Rezania
出处
期刊:Journal of water process engineering [Elsevier BV]
卷期号:54: 103957-103957 被引量:22
标识
DOI:10.1016/j.jwpe.2023.103957
摘要

Measuring water quality parameters is a significant step in many hydrological assessments. Dissolved oxygen (DO) is one of these parameters that is an indicator of water quality. Hence, this study offers two novel intelligent models, i.e., the integration of biogeography-based optimization (BBO) and atom search optimization (ASO) with artificial neural network (ANN), to predict the daily DO. These methods are comparatively assessed and validated against several benchmark techniques. Five-year (2014–2019) water quality data of a USGS station called Rock Creek (Station number 01648010) is used for implementing the proposed model. In this sense, the models first learn the DO behavior using 80 % of the data and they then predict the DO for the fifth year. As per the performed sensitivity analysis, the water temperature was selected as the most effective parameter in the DO prediction. Trying different population sizes determined an optimal configuration of the employed models and assessing the accuracy of the results revealed that the proposed models can nicely perceive the DO pattern with around 4 % mean absolute percentage error (MAPE) and 97.5 % correlation. In the testing phase, the BBO-ANN and ASO-ANN models predicted the DO of the fifth year with MAPEs 2.3848 and 2.5170 %, and correlations of 0.99186 and 0.99135, respectively. Moreover, the suggested BBO-ANN and ASO-ANN outperformed some similar hybrids from the existing literature. Lastly, an explicit formula is derived from the BBO-ANN for convenient prediction of the DO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿柒完成签到,获得积分10
刚刚
顾矜应助称心冬云采纳,获得10
2秒前
科研通AI2S应助可口可乐采纳,获得10
2秒前
小二郎应助杨纨成采纳,获得10
3秒前
小马甲应助羽羽采纳,获得10
3秒前
干净的凡桃完成签到 ,获得积分10
3秒前
耍酷的剑身完成签到,获得积分10
3秒前
慕青应助中原第一深情采纳,获得10
4秒前
俞璐完成签到,获得积分10
5秒前
大个应助QLZ采纳,获得10
5秒前
5秒前
6秒前
7秒前
yar应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
8秒前
qin希望应助科研通管家采纳,获得10
8秒前
whatever应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得30
8秒前
谢许杯商应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
yar应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
9秒前
Bio应助科研通管家采纳,获得30
9秒前
yar应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
Bio应助科研通管家采纳,获得30
9秒前
9秒前
9秒前
9秒前
mini发布了新的文献求助10
9秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998235
求助须知:如何正确求助?哪些是违规求助? 3537729
关于积分的说明 11272361
捐赠科研通 3276854
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883757
科研通“疑难数据库(出版商)”最低求助积分说明 810014