Diversity-Connected Graph Convolutional Network for Hyperspectral Image Classification

高光谱成像 计算机科学 图形 模式识别(心理学) 人工智能 邻接表 邻接矩阵 算法 理论计算机科学
作者
Yun Ding,Yanwen Chong,Shaoming Pan,Chun-Hou Zheng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:12
标识
DOI:10.1109/tgrs.2023.3298848
摘要

Hyperspectral image classification methods based on the graph convolutional network (GCN) have received more attention because they can handle irregular regions by graph encoding techniques. However, GCN-based HSI classification methods are highly sensitive to the quality of the graph structure. Its performance degrades in the case of underdeveloped graphs because it cannot excavate the intrinsic adjacency relationships. Thus, it is necessary to improve the quality of graph structure in GCN-based methods. In this paper, a novel diversity-connected graph convolutional network (DCGCN) method is proposed to improve the quality of the graph structure for HSI classification, and its basic idea can be adopted by other GCN-based methods. First, the potential neighbors are excavated by performing topological extensions based on the given graph. The diversity of surrounding neighbors is maintained by adaptively smoothing operation via a global threshold value from Kullback-Leibler divergence to eliminate weak interclass connections caused by weakly spectral variability. Second, another key connectivity restriction is imposed on the diverse neighbors to further refine the ambiguous connections of hard samples aiming at removing strong interclass connections where the spectral information is heavily confounded. Finally, the DCGCN method is analyzed theoretically to demonstrate its low-pass filter property. The comprehensive experiments demonstrate the effectiveness of the proposed DCGCN method and the basic idea of the diversity-connected graph in terms of overall accuracy (OA), kappa coefficient (KC), average accuracy (AA) indexes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhou完成签到 ,获得积分10
刚刚
1秒前
1秒前
1秒前
3秒前
wang发布了新的文献求助10
4秒前
5秒前
Duke_ethan完成签到,获得积分10
5秒前
斯文败类应助司佳雨采纳,获得10
6秒前
苏日古嘎发布了新的文献求助10
6秒前
梨L发布了新的文献求助10
7秒前
谷谷关注了科研通微信公众号
7秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
科研通AI6应助牧笛采纳,获得10
10秒前
11秒前
12秒前
12秒前
Allein发布了新的文献求助10
12秒前
Fiona发布了新的文献求助30
13秒前
13秒前
迷你的秋双完成签到,获得积分10
14秒前
14秒前
爱喝蜜桃乌龙完成签到,获得积分10
14秒前
朱朱完成签到 ,获得积分10
14秒前
15秒前
默默善愁完成签到,获得积分10
15秒前
无花果应助禤X采纳,获得10
16秒前
16秒前
生动的煎蛋完成签到 ,获得积分10
17秒前
18秒前
18秒前
19秒前
XIAODI发布了新的文献求助10
19秒前
正直的广缘完成签到 ,获得积分10
20秒前
木木发布了新的文献求助10
20秒前
文艺裘发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
21秒前
默默善愁发布了新的文献求助10
22秒前
陈粒完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421419
求助须知:如何正确求助?哪些是违规求助? 4536428
关于积分的说明 14153602
捐赠科研通 4452960
什么是DOI,文献DOI怎么找? 2442661
邀请新用户注册赠送积分活动 1434042
关于科研通互助平台的介绍 1411237