Diversity-Connected Graph Convolutional Network for Hyperspectral Image Classification

高光谱成像 计算机科学 图形 模式识别(心理学) 人工智能 邻接表 邻接矩阵 算法 理论计算机科学
作者
Yun Ding,Yanwen Chong,Shaoming Pan,Chun-Hou Zheng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:12
标识
DOI:10.1109/tgrs.2023.3298848
摘要

Hyperspectral image classification methods based on the graph convolutional network (GCN) have received more attention because they can handle irregular regions by graph encoding techniques. However, GCN-based HSI classification methods are highly sensitive to the quality of the graph structure. Its performance degrades in the case of underdeveloped graphs because it cannot excavate the intrinsic adjacency relationships. Thus, it is necessary to improve the quality of graph structure in GCN-based methods. In this paper, a novel diversity-connected graph convolutional network (DCGCN) method is proposed to improve the quality of the graph structure for HSI classification, and its basic idea can be adopted by other GCN-based methods. First, the potential neighbors are excavated by performing topological extensions based on the given graph. The diversity of surrounding neighbors is maintained by adaptively smoothing operation via a global threshold value from Kullback-Leibler divergence to eliminate weak interclass connections caused by weakly spectral variability. Second, another key connectivity restriction is imposed on the diverse neighbors to further refine the ambiguous connections of hard samples aiming at removing strong interclass connections where the spectral information is heavily confounded. Finally, the DCGCN method is analyzed theoretically to demonstrate its low-pass filter property. The comprehensive experiments demonstrate the effectiveness of the proposed DCGCN method and the basic idea of the diversity-connected graph in terms of overall accuracy (OA), kappa coefficient (KC), average accuracy (AA) indexes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cjk应助miles采纳,获得10
1秒前
科研通AI6应助城123采纳,获得10
1秒前
2秒前
Ava应助秋qiu采纳,获得10
2秒前
冰冰发布了新的文献求助10
2秒前
2秒前
swx发布了新的文献求助10
2秒前
2秒前
科研通AI6应助仁爱发卡采纳,获得10
2秒前
思源应助哈哈哈哈采纳,获得10
3秒前
小点点完成签到 ,获得积分10
4秒前
22222发布了新的文献求助10
5秒前
5秒前
华仔应助zzzdx采纳,获得10
5秒前
CodeCraft应助谌小杰采纳,获得10
5秒前
缓慢采柳发布了新的文献求助10
6秒前
垃圾筐发布了新的文献求助10
6秒前
6秒前
Eoghanyiii完成签到,获得积分10
6秒前
合适夜柳完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
9秒前
科研通AI6应助2025211022采纳,获得10
9秒前
Meyako应助王红鑫采纳,获得20
9秒前
muyu完成签到,获得积分10
9秒前
林钰浩发布了新的文献求助10
9秒前
浮游应助英勇的醉卉采纳,获得10
10秒前
学无止境完成签到,获得积分10
10秒前
10秒前
哈哈哈发布了新的文献求助10
11秒前
11秒前
冰冰完成签到,获得积分10
11秒前
阿梁发布了新的文献求助10
11秒前
12秒前
无花果应助其11采纳,获得10
12秒前
12秒前
科研通AI2S应助SQ采纳,获得10
12秒前
秋qiu发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5354035
求助须知:如何正确求助?哪些是违规求助? 4486507
关于积分的说明 13966675
捐赠科研通 4386923
什么是DOI,文献DOI怎么找? 2410096
邀请新用户注册赠送积分活动 1402435
关于科研通互助平台的介绍 1376249