Diversity-Connected Graph Convolutional Network for Hyperspectral Image Classification

高光谱成像 计算机科学 图形 模式识别(心理学) 人工智能 邻接表 邻接矩阵 算法 理论计算机科学
作者
Yun Ding,Yanwen Chong,Shaoming Pan,Chun-Hou Zheng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:12
标识
DOI:10.1109/tgrs.2023.3298848
摘要

Hyperspectral image classification methods based on the graph convolutional network (GCN) have received more attention because they can handle irregular regions by graph encoding techniques. However, GCN-based HSI classification methods are highly sensitive to the quality of the graph structure. Its performance degrades in the case of underdeveloped graphs because it cannot excavate the intrinsic adjacency relationships. Thus, it is necessary to improve the quality of graph structure in GCN-based methods. In this paper, a novel diversity-connected graph convolutional network (DCGCN) method is proposed to improve the quality of the graph structure for HSI classification, and its basic idea can be adopted by other GCN-based methods. First, the potential neighbors are excavated by performing topological extensions based on the given graph. The diversity of surrounding neighbors is maintained by adaptively smoothing operation via a global threshold value from Kullback-Leibler divergence to eliminate weak interclass connections caused by weakly spectral variability. Second, another key connectivity restriction is imposed on the diverse neighbors to further refine the ambiguous connections of hard samples aiming at removing strong interclass connections where the spectral information is heavily confounded. Finally, the DCGCN method is analyzed theoretically to demonstrate its low-pass filter property. The comprehensive experiments demonstrate the effectiveness of the proposed DCGCN method and the basic idea of the diversity-connected graph in terms of overall accuracy (OA), kappa coefficient (KC), average accuracy (AA) indexes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兔兔完成签到 ,获得积分10
3秒前
大气小天鹅完成签到 ,获得积分10
12秒前
陈秋完成签到,获得积分10
13秒前
风清扬发布了新的文献求助10
16秒前
发个15分的完成签到 ,获得积分10
18秒前
melody完成签到 ,获得积分10
22秒前
地表飞猪完成签到,获得积分0
22秒前
天将明完成签到 ,获得积分10
23秒前
24秒前
酷酷一笑发布了新的文献求助10
29秒前
cheng完成签到 ,获得积分10
29秒前
yanjiuhuzu完成签到,获得积分10
38秒前
tengyve完成签到,获得积分10
51秒前
酷炫蛋挞完成签到 ,获得积分10
52秒前
candy6663339完成签到,获得积分10
52秒前
回首不再是少年完成签到,获得积分0
54秒前
酷酷一笑完成签到,获得积分10
56秒前
天天快乐应助科研通管家采纳,获得10
1分钟前
isedu完成签到,获得积分10
1分钟前
U9A完成签到,获得积分10
1分钟前
一亩蔬菜完成签到,获得积分10
1分钟前
Lucas应助科研人一枚采纳,获得10
1分钟前
hi完成签到,获得积分10
1分钟前
快乐的芷巧完成签到,获得积分10
1分钟前
酷酷小子完成签到 ,获得积分10
1分钟前
1分钟前
巴山完成签到,获得积分10
1分钟前
无花果应助ly采纳,获得10
1分钟前
loren313完成签到,获得积分0
1分钟前
玄学小生完成签到 ,获得积分10
1分钟前
小梦完成签到,获得积分10
1分钟前
白桃完成签到 ,获得积分10
1分钟前
王世卉完成签到,获得积分10
1分钟前
湖以完成签到 ,获得积分10
1分钟前
清脆的靖仇完成签到,获得积分10
1分钟前
lixiaoya完成签到,获得积分10
1分钟前
小洪俊熙完成签到,获得积分10
1分钟前
nicolaslcq完成签到,获得积分10
1分钟前
研友_Z119gZ完成签到 ,获得积分10
2分钟前
Cold-Drink-Shop完成签到,获得积分10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968559
求助须知:如何正确求助?哪些是违规求助? 3513358
关于积分的说明 11167340
捐赠科研通 3248714
什么是DOI,文献DOI怎么找? 1794453
邀请新用户注册赠送积分活动 875065
科研通“疑难数据库(出版商)”最低求助积分说明 804664