Diversity-Connected Graph Convolutional Network for Hyperspectral Image Classification

高光谱成像 计算机科学 图形 模式识别(心理学) 人工智能 邻接表 邻接矩阵 算法 理论计算机科学
作者
Yun Ding,Yanwen Chong,Shaoming Pan,Chun-Hou Zheng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:12
标识
DOI:10.1109/tgrs.2023.3298848
摘要

Hyperspectral image classification methods based on the graph convolutional network (GCN) have received more attention because they can handle irregular regions by graph encoding techniques. However, GCN-based HSI classification methods are highly sensitive to the quality of the graph structure. Its performance degrades in the case of underdeveloped graphs because it cannot excavate the intrinsic adjacency relationships. Thus, it is necessary to improve the quality of graph structure in GCN-based methods. In this paper, a novel diversity-connected graph convolutional network (DCGCN) method is proposed to improve the quality of the graph structure for HSI classification, and its basic idea can be adopted by other GCN-based methods. First, the potential neighbors are excavated by performing topological extensions based on the given graph. The diversity of surrounding neighbors is maintained by adaptively smoothing operation via a global threshold value from Kullback-Leibler divergence to eliminate weak interclass connections caused by weakly spectral variability. Second, another key connectivity restriction is imposed on the diverse neighbors to further refine the ambiguous connections of hard samples aiming at removing strong interclass connections where the spectral information is heavily confounded. Finally, the DCGCN method is analyzed theoretically to demonstrate its low-pass filter property. The comprehensive experiments demonstrate the effectiveness of the proposed DCGCN method and the basic idea of the diversity-connected graph in terms of overall accuracy (OA), kappa coefficient (KC), average accuracy (AA) indexes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助LVVVB采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
勤奋的夜绿完成签到,获得积分10
1秒前
1秒前
2秒前
沉默黑猫完成签到,获得积分20
2秒前
2秒前
LIN发布了新的文献求助10
2秒前
Jackson_Cai发布了新的文献求助10
2秒前
3秒前
HXX发布了新的文献求助10
4秒前
eric888应助tigerxhz采纳,获得30
4秒前
明明明完成签到,获得积分10
4秒前
Jlu发布了新的文献求助10
4秒前
栾玉发布了新的文献求助10
4秒前
fafafa发布了新的文献求助10
4秒前
稳重的秋天完成签到,获得积分10
5秒前
鲤鱼千亦关注了科研通微信公众号
5秒前
5秒前
高大的未来完成签到,获得积分10
5秒前
镓氧锌钇铀应助Jean0603采纳,获得20
5秒前
什么东西完成签到,获得积分10
6秒前
6秒前
lyh发布了新的文献求助10
6秒前
dingdingdingding完成签到,获得积分10
6秒前
猫猫爱吃煎饼完成签到 ,获得积分10
7秒前
ning发布了新的文献求助10
7秒前
7秒前
8秒前
博一博完成签到 ,获得积分10
8秒前
脚踏实地i完成签到,获得积分10
8秒前
8秒前
8秒前
顾矜应助磷酸瞳采纳,获得10
8秒前
8秒前
研友_Z7QXwL发布了新的文献求助10
9秒前
9秒前
子轩完成签到,获得积分20
9秒前
9秒前
9秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238364
求助须知:如何正确求助?哪些是违规求助? 4405962
关于积分的说明 13712456
捐赠科研通 4274323
什么是DOI,文献DOI怎么找? 2345561
邀请新用户注册赠送积分活动 1342588
关于科研通互助平台的介绍 1300579