Diversity-Connected Graph Convolutional Network for Hyperspectral Image Classification

高光谱成像 计算机科学 图形 模式识别(心理学) 人工智能 邻接表 邻接矩阵 算法 理论计算机科学
作者
Yun Ding,Yanwen Chong,Shaoming Pan,Chun-Hou Zheng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:12
标识
DOI:10.1109/tgrs.2023.3298848
摘要

Hyperspectral image classification methods based on the graph convolutional network (GCN) have received more attention because they can handle irregular regions by graph encoding techniques. However, GCN-based HSI classification methods are highly sensitive to the quality of the graph structure. Its performance degrades in the case of underdeveloped graphs because it cannot excavate the intrinsic adjacency relationships. Thus, it is necessary to improve the quality of graph structure in GCN-based methods. In this paper, a novel diversity-connected graph convolutional network (DCGCN) method is proposed to improve the quality of the graph structure for HSI classification, and its basic idea can be adopted by other GCN-based methods. First, the potential neighbors are excavated by performing topological extensions based on the given graph. The diversity of surrounding neighbors is maintained by adaptively smoothing operation via a global threshold value from Kullback-Leibler divergence to eliminate weak interclass connections caused by weakly spectral variability. Second, another key connectivity restriction is imposed on the diverse neighbors to further refine the ambiguous connections of hard samples aiming at removing strong interclass connections where the spectral information is heavily confounded. Finally, the DCGCN method is analyzed theoretically to demonstrate its low-pass filter property. The comprehensive experiments demonstrate the effectiveness of the proposed DCGCN method and the basic idea of the diversity-connected graph in terms of overall accuracy (OA), kappa coefficient (KC), average accuracy (AA) indexes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助燕子采纳,获得10
刚刚
1秒前
Zhixiang发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
曲曲完成签到,获得积分10
3秒前
科研通AI6应助77采纳,获得10
3秒前
科研通AI6应助春天的鱼采纳,获得10
3秒前
大宝完成签到,获得积分10
4秒前
4秒前
玉麒麟完成签到,获得积分0
5秒前
yznfly给jetwang的求助进行了留言
5秒前
BZJ完成签到,获得积分10
5秒前
是阿瑾呀发布了新的文献求助10
5秒前
6秒前
唯美发布了新的文献求助10
6秒前
6秒前
6秒前
异乡人发布了新的文献求助10
7秒前
7秒前
小耗子完成签到,获得积分10
7秒前
黎明完成签到,获得积分10
8秒前
9秒前
研友_84WJXZ完成签到,获得积分20
9秒前
10秒前
淡淡的雪完成签到,获得积分10
10秒前
慧慧发布了新的文献求助10
11秒前
bkagyin应助will采纳,获得10
11秒前
11秒前
guoguo发布了新的文献求助10
11秒前
米饭儿完成签到 ,获得积分10
11秒前
moonlight发布了新的文献求助10
11秒前
Eternity发布了新的文献求助10
12秒前
12秒前
nkjingyi发布了新的文献求助10
12秒前
一只萌新完成签到,获得积分10
13秒前
杨飞完成签到,获得积分10
13秒前
pepeli发布了新的文献求助10
15秒前
务实的绝悟完成签到,获得积分10
16秒前
一页墨城完成签到,获得积分10
16秒前
万能图书馆应助唯美采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434613
求助须知:如何正确求助?哪些是违规求助? 4546954
关于积分的说明 14205090
捐赠科研通 4466915
什么是DOI,文献DOI怎么找? 2448366
邀请新用户注册赠送积分活动 1439237
关于科研通互助平台的介绍 1416060