已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Diversity-Connected Graph Convolutional Network for Hyperspectral Image Classification

高光谱成像 计算机科学 图形 模式识别(心理学) 人工智能 邻接表 邻接矩阵 算法 理论计算机科学
作者
Yun Ding,Yanwen Chong,Shaoming Pan,Chun-Hou Zheng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:12
标识
DOI:10.1109/tgrs.2023.3298848
摘要

Hyperspectral image classification methods based on the graph convolutional network (GCN) have received more attention because they can handle irregular regions by graph encoding techniques. However, GCN-based HSI classification methods are highly sensitive to the quality of the graph structure. Its performance degrades in the case of underdeveloped graphs because it cannot excavate the intrinsic adjacency relationships. Thus, it is necessary to improve the quality of graph structure in GCN-based methods. In this paper, a novel diversity-connected graph convolutional network (DCGCN) method is proposed to improve the quality of the graph structure for HSI classification, and its basic idea can be adopted by other GCN-based methods. First, the potential neighbors are excavated by performing topological extensions based on the given graph. The diversity of surrounding neighbors is maintained by adaptively smoothing operation via a global threshold value from Kullback-Leibler divergence to eliminate weak interclass connections caused by weakly spectral variability. Second, another key connectivity restriction is imposed on the diverse neighbors to further refine the ambiguous connections of hard samples aiming at removing strong interclass connections where the spectral information is heavily confounded. Finally, the DCGCN method is analyzed theoretically to demonstrate its low-pass filter property. The comprehensive experiments demonstrate the effectiveness of the proposed DCGCN method and the basic idea of the diversity-connected graph in terms of overall accuracy (OA), kappa coefficient (KC), average accuracy (AA) indexes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研学术完成签到,获得积分10
4秒前
全鑫发布了新的文献求助10
4秒前
义气的青枫完成签到 ,获得积分10
5秒前
fei完成签到 ,获得积分10
5秒前
6秒前
Brenna完成签到 ,获得积分10
8秒前
ccm应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
mashibeo应助科研通管家采纳,获得10
9秒前
9秒前
pluto应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
pluto应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
mashibeo应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得40
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
共享精神应助xwz626采纳,获得10
10秒前
reece完成签到 ,获得积分10
11秒前
14秒前
钰L发布了新的文献求助10
14秒前
优美的莹芝完成签到,获得积分10
19秒前
全鑫完成签到,获得积分10
20秒前
123关注了科研通微信公众号
20秒前
Ade完成签到,获得积分10
21秒前
哈哈完成签到 ,获得积分10
23秒前
跳跃的鹏飞完成签到 ,获得积分0
24秒前
博弈春秋发布了新的文献求助10
24秒前
科研通AI6应助Jodie采纳,获得10
25秒前
斯文败类应助是阿瑾呀采纳,获得10
26秒前
lmplzzp发布了新的文献求助30
27秒前
鱼鱼籽不认路完成签到 ,获得积分10
28秒前
fx完成签到 ,获得积分10
28秒前
bastien完成签到,获得积分10
30秒前
矜天完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458682
求助须知:如何正确求助?哪些是违规求助? 4564690
关于积分的说明 14296618
捐赠科研通 4489782
什么是DOI,文献DOI怎么找? 2459274
邀请新用户注册赠送积分活动 1449020
关于科研通互助平台的介绍 1424502