Tea-YOLOv8s: A Tea Bud Detection Model Based on Deep Learning and Computer Vision

人工智能 计算机科学 联营 棱锥(几何) 目标检测 特征(语言学) 模式识别(心理学) 计算机视觉 机器学习 数学 几何学 语言学 哲学
作者
Shuang Xie,Hongwei Sun
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (14): 6576-6576 被引量:34
标识
DOI:10.3390/s23146576
摘要

Tea bud target detection is essential for mechanized selective harvesting. To address the challenges of low detection precision caused by the complex backgrounds of tea leaves, this paper introduces a novel model called Tea-YOLOv8s. First, multiple data augmentation techniques are employed to increase the amount of information in the images and improve their quality. Then, the Tea-YOLOv8s model combines deformable convolutions, attention mechanisms, and improved spatial pyramid pooling, thereby enhancing the model's ability to learn complex object invariance, reducing interference from irrelevant factors, and enabling multi-feature fusion, resulting in improved detection precision. Finally, the improved YOLOv8 model is compared with other models to validate the effectiveness of the proposed improvements. The research results demonstrate that the Tea-YOLOv8s model achieves a mean average precision of 88.27% and an inference time of 37.1 ms, with an increase in the parameters and calculation amount by 15.4 M and 17.5 G, respectively. In conclusion, although the proposed approach increases the model's parameters and calculation amount, it significantly improves various aspects compared to mainstream YOLO detection models and has the potential to be applied to tea buds picked by mechanization equipment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
英俊的铭应助嘿撒采纳,获得10
1秒前
2秒前
大胆班完成签到,获得积分10
2秒前
2秒前
2秒前
sunshine发布了新的文献求助10
3秒前
3秒前
米娅完成签到,获得积分10
3秒前
结实熠彤完成签到,获得积分20
3秒前
bhkwxdxy完成签到,获得积分10
3秒前
勤劳元瑶完成签到,获得积分10
4秒前
Liooo完成签到 ,获得积分10
4秒前
gao完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
这么年轻压根睡不着完成签到,获得积分10
4秒前
开心蘑菇发布了新的文献求助10
5秒前
5秒前
赵123完成签到,获得积分10
5秒前
暗夜星辰发布了新的文献求助10
6秒前
木子完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
ws发布了新的文献求助10
6秒前
冷酷新柔发布了新的文献求助10
7秒前
7秒前
我ppp发布了新的文献求助30
7秒前
7秒前
庄舒嫒完成签到,获得积分10
8秒前
岸芷汀兰完成签到,获得积分10
8秒前
8秒前
感松发布了新的文献求助10
9秒前
nbing完成签到,获得积分10
9秒前
不敢自称科研人完成签到,获得积分10
9秒前
852应助橘子果酱采纳,获得10
9秒前
汉天完成签到,获得积分10
10秒前
幸运儿橙德加完成签到,获得积分10
10秒前
小黑马完成签到,获得积分10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016703
求助须知:如何正确求助?哪些是违规求助? 3556823
关于积分的说明 11322708
捐赠科研通 3289505
什么是DOI,文献DOI怎么找? 1812495
邀请新用户注册赠送积分活动 888064
科研通“疑难数据库(出版商)”最低求助积分说明 812086