Tea-YOLOv8s: A Tea Bud Detection Model Based on Deep Learning and Computer Vision

人工智能 计算机科学 联营 棱锥(几何) 目标检测 特征(语言学) 模式识别(心理学) 计算机视觉 机器学习 数学 语言学 哲学 几何学
作者
Shuang Xie,Hongwei Sun
出处
期刊:Sensors [MDPI AG]
卷期号:23 (14): 6576-6576 被引量:34
标识
DOI:10.3390/s23146576
摘要

Tea bud target detection is essential for mechanized selective harvesting. To address the challenges of low detection precision caused by the complex backgrounds of tea leaves, this paper introduces a novel model called Tea-YOLOv8s. First, multiple data augmentation techniques are employed to increase the amount of information in the images and improve their quality. Then, the Tea-YOLOv8s model combines deformable convolutions, attention mechanisms, and improved spatial pyramid pooling, thereby enhancing the model's ability to learn complex object invariance, reducing interference from irrelevant factors, and enabling multi-feature fusion, resulting in improved detection precision. Finally, the improved YOLOv8 model is compared with other models to validate the effectiveness of the proposed improvements. The research results demonstrate that the Tea-YOLOv8s model achieves a mean average precision of 88.27% and an inference time of 37.1 ms, with an increase in the parameters and calculation amount by 15.4 M and 17.5 G, respectively. In conclusion, although the proposed approach increases the model's parameters and calculation amount, it significantly improves various aspects compared to mainstream YOLO detection models and has the potential to be applied to tea buds picked by mechanization equipment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助泽山咸采纳,获得10
刚刚
萧水白完成签到,获得积分10
刚刚
aaaaa发布了新的文献求助10
1秒前
woyufengtian完成签到,获得积分10
1秒前
2秒前
rgsrgrs完成签到,获得积分10
2秒前
惊鸿一面完成签到,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助30
4秒前
Larluli完成签到,获得积分20
6秒前
6秒前
说话请投币完成签到,获得积分10
6秒前
iNk应助明杰采纳,获得10
7秒前
DS发布了新的文献求助10
7秒前
7秒前
Twonej应助datiancaihaha采纳,获得30
8秒前
CodeCraft应助nuo_11采纳,获得10
8秒前
恋如雪止应助于你无瓜采纳,获得10
9秒前
快乐的妙菱完成签到,获得积分10
9秒前
10秒前
领导范儿应助优美紫槐采纳,获得10
12秒前
大模型应助明杰采纳,获得10
12秒前
王大可发布了新的文献求助10
12秒前
发篇Sci不过分吧完成签到,获得积分10
13秒前
只只发布了新的文献求助10
14秒前
李健的小迷弟应助lyy采纳,获得10
14秒前
清爽的诗云完成签到,获得积分10
15秒前
我是老大应助支凤妖采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
exp应助繁荣的萝莉采纳,获得10
17秒前
18秒前
小恐龙在外太空睡觉完成签到 ,获得积分10
19秒前
阿超完成签到 ,获得积分10
21秒前
BowieHuang应助科研通管家采纳,获得10
21秒前
BowieHuang应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
22秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729500
求助须知:如何正确求助?哪些是违规求助? 5318746
关于积分的说明 15316776
捐赠科研通 4876514
什么是DOI,文献DOI怎么找? 2619398
邀请新用户注册赠送积分活动 1568923
关于科研通互助平台的介绍 1525513