概化理论
理论(学习稳定性)
蛋白质稳定性
素数(序理论)
蛋白质工程
计算机科学
任务(项目管理)
人工智能
机器学习
化学
工程类
数学
生物化学
酶
系统工程
统计
组合数学
作者
Pan Tan,Mingchen Li,Yuanxi Yu,Fan Jiang,Lirong Zheng,Banghao Wu,Xinyu Sun,Liqi Kang,Jie Song,Liang Zhang,Xiong Yi,Wanli Ouyang,Zhiqiang Hu,Guisheng Fan,Yufeng Pei,Hong Liang
出处
期刊:Cornell University - arXiv
日期:2023-01-01
标识
DOI:10.48550/arxiv.2307.12682
摘要
Designing protein mutants with high stability and activity is a critical yet challenging task in protein engineering. Here, we introduce PRIME, an innovative deep learning approach for the zero-shot prediction of both protein stability and enzymatic activity. PRIME leverages temperature-guided language modelling, providing robust and precise predictions without relying on prior experimental mutagenesis data. Tested against 33 protein datasets, PRIME demonstrated superior predictive performance and generalizability compared to current state-of-the-art models
科研通智能强力驱动
Strongly Powered by AbleSci AI